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Sufficient conditions for existence of the solution and coercive estimation for the solution 

of a third-order linear differential equation with a variable high coefficient in the following form  

 

    )()()(55
''

'22 xfyxirxqyxxyl   ,   (1) 

 

are obtained in this work, here 0,1),(  pRLLf pp . 

In the works of R.D.Akhmetkaliyeva, L.-E.Persson, K.N.Ospanov, P.Wall [1], which was 

published in 2015 various cases of the third-order linear differential equation with variable high 

coefficient are studied in details, and the results are presented. The fifth-order linear differential 

equation with a variable high coefficient was considered in the researching work of A.E.Muslim 

[2]. 

The general form  

       )()()()()(
'''

321 xfyxirxqymxmxmyEL   ,  pLf  , 1  

 

of the third order differential equations was considered in the dissertation work of 

R.D.Akhmetkaliyeva «Coercive estimate of the solution of the singular differential equation and 

its applications» [3]. 

Definition. A function )()( RLxy p  is called a solution of the differential equation in the 

following form  

    )()()()()(:
''' xfyxirxqyxmxmyL   , 

if there exists a sequence  
1nny of three times continuously differentiable functions with 

compact support , and 0
pn yy , 0

pn fyL , ( n ) are fulfilled.  

 A symbol )()( RC k  is signified the set of all k  times continuously differentiable functions 

)(x .    
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Our main results in this work read: 

 Theorem. Suppose that )(xq  and )(xr  are continuous functions on R  and satisfies the 

following conditions: 
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Then there is a number 00  , such that there exists a unique solution y  for all 
0   

of the equation (1) and for it the estimate  
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holds. 

For proving the obtained results firstly, we construct the function in the following form 
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Here )(xss    ( 3,2,1s ) are the roots of the equation: 

    0)()(5 32   xqixrx . 

Let    1,10  Cd   be a function in the following form 
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We represent the next integral operators: 

         3,2,1,,   jdxxfxMfM
R

jj  . 

 Lemma 1. Let  p1 ,  ,xk  be a continuous function and 
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Then  
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 Lemma 2. Let all conditions of the Theorem 1 hold. Then the operators  jM , 3,2,1j  

are continuous in the pL  and they satisfies the following estimate: 
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and, also 
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 Lemma 3. Let all conditions of Theorem hold, then it satisfies the next equality: 

 

              fMfMffML 313  .  (5) 

 

 Suppose that all conditions of Theorem holds for )(xq , )(xr  and let 1
11

'


pp
, where 

'p  is conjugate number of p . The symbol  'L  means the operators, which operate in the 

 RL
p ' , which is described by the next equality: 

    zLyzyL
'

,,   ,  LDy ,    'LDz . 

Apparently, from this it leads to: 
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We examine the third-order differential equation in the following form 
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  ,  (6) 

 

here )(xq , )(xr  are continuous functions with a real value, 1  and  RLxg
p ')(  . 

 Lemma 4. Let all conditions of the Theorem hold for the continuous functions )(xq , 

)(xr . Then there is a number 01  , such that equation (6) has the solution for all 1  . 

 Proof of Theorem. Applying the estimates (3) and (4) from Lemma 1, we make a 

conclusion that there is a number 00   such that the inequality 

   
2

1
21 

 ppPp LLLL
MM   fulfills for 0  . Because of this there exists a bounded 

inverse operator  1G  in pL  of the operator, which is defined in the next form: 

      21: MMEG  . Consequently, assuming an equation      fMMEh  21  , 

taking into account an equality (5) from the Lemma 2, we receive that      hhGML  

1

3 . 

So, it ensues that equation (1) for any right-hand side f  has the solution.  
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We make a conclusion that there is an right inverse of the operator  'L , which operates in the 

space  RL
p '  during the 1   by applying Lemma 3. A right inverse is defined on  RL

p ' . So, 

    0ker
*'
L , here   *'

L  is conjugate operator of  'L . Hence, we get that  0ker L , 

 10 ,max
~

   due to   *'

L  is an extension of the operator L . So, L  is bounded 

invertible operator in the space  RL
p ' . Actually, we obtain that 
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 Suppose that the equation (1) has a solution, and solution is y . Here  10 ,max
~

 

. We should prove the estimate (2) by applying (7), Lemma 1 and all conditions of the Theorem. 

We obtain that 
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Due to this and (1) we make a conclusion that    
pp

p

yfcyxx 
''

'22 55 . Eventually, 

by combining the last two estimates we get (2). The Theorem is completely proved. 
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 For a measurable function :( , ) ( , )0 0    the generalized fractional maximal 

operator M  is defined by 

( )( ) sup ( ) ( )
( , )

M f x t f y dy
t

B x t

 



0

, 

where B x t( , )  is the ball in R n
 of radius r  centered at x Rn . 
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