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a b s t r a c t

We consider a linear system composed of N + 1 one dimensional heat equations connected by point-
mass-like interface conditions. Assume an L2 Dirichlet boundary control at one end, and Dirichlet
boundary condition on the other end. Given any L2-type initial temperature distribution, we show
that the system is null controllable in arbitrarily small time. The proof uses known results for exact
controllability for the associated wave equation. An argument using the Fourier Method reduces the
control problem for both the heat equation and the wave equation to certain moment problems.
Controllability is then proved by relating minimality properties of the family of exponential functions
associated to the wave with the family associated to the heat equation. Based on the controllability
result we solve the dynamical inverse problem, i.e. recover unknown parameters of the system from
the Dirichlet-to-Neumann map given at a boundary point.

© 2020 Elsevier B.V. All rights reserved.
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1. Introduction

There has been much interest in so called ‘‘hybrid systems’’ in
hich the dynamics of elastic systems and possibly rigid struc-
ures are related through some form of coupling. The study of
ontrollability and stabilization of such structures has been made
n a number of works, see [1] and references therein, The con-
rollability of a string with a single attached mass was first
onsidered in [2]. For the case of N attached masses, see in [3,4]
nd references therein. The controllability of a series of Euler–
ernoulli beams with interior attached masses was considered
n [5], and for the Schrödinger equation with strong singularities
ee [6,7].
In this paper we consider the heat equation on the interval

0, ℓ] with strong singularities at aj, j = 1, . . . ,N , where 0 =

0 < a1 < · · · < aN < aN+1 = ℓ. In what follows, vj(x, t)
ill denote the temperature in the interval (aj, aj+1), and hj(t)
ill denote the temperature at x = aj. We consider the following
ystem. For j = 0, . . . ,N , we have

j(x)ρj(x)
∂vj

∂t
− (

∂

∂x
k(x)

∂vj

∂x
) + qj(x)vj = 0, t > 0, x ∈ (aj, aj+1),

(1.1)
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while for j = 1, . . . ,N we have

vj−1(a−

j , t) = hj(t) = vj(a+

j , t),

kj(a+

j )
∂vj

∂x
(a+

j , t) − kj−1(a−

j )
∂vj−1

∂x
(a−

j , t) = c̃jM̃jh′

j(t), (1.2)

vN (ℓ−, t) = 0. (1.3)

Here v(a+

j , t) := limϵ→0+ v(aj + ϵ, t) for fixed t , and v(a−

j , t) is
defined similarly. This system is an idealization of (N + 1) thin
rods separated by point masses M̃j placed at aj; cj and c̃j are the
specific heats of segments and masses, and ρj, resp. kj, are the
mass density, resp. thermal conductivity, of the segment (aj, aj+1).
Finally, qj(x) represents some potential on (aj, aj+1).

We assume initial conditions

j(x, 0) = wj(x), x ∈ (aj, aj+1), j = 0, . . . ,N, (1.4)

hj(0) = (w)j, j = 1, . . . ,N, (1.5)

or (2N + 1)-tuple w := (w0(x), . . . , wN (x), (w)1, . . . , (w)N ) ∈
N
j=0L

2(aj, aj+1)⊕RN , and we assume a control is applied at x = 0:

v0(0+, t) = f (t), t > 0. (1.6)

We assume for j = 0, 1, 2, that qj extends to C[aj, aj+1], while
for j > 2, qj extends to a function in C j−2

[aj, aj+1]. We assume
j+2
cj, ρj, kj ∈ C [aj, aj+1], and each of these functions is strictly
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ositive, and also that M̃j, c̃j are all positive. Our methods still
pply if qj ∈ Hmax(0,j−2)(aj, aj+1), but the presentation is more
umbersome.
Here and in what follows H j(aj, aj+1) refers to the standard

Sobolev space, with H0
= L2. In what follows, we will refer

to the vector (v0, h1, v1, . . . , hN , vN ) simply as vf (x, t). Denote
L2M (0, ℓ) = ⊕

N
j=0L

2(aj, aj+1) ⊕ RN . The definition of the norm
∥ ∗ ∥L2M (0,ℓ) will be given in the next section.

The associated Sturm–Liouville problem has a self-adjoint op-
erator with discrete spectrum, from which we define a family of
Sobolev-like spaces Hp. Using a standard Fourier series argument
(see [8, Section III.1]) with estimates (2.10), (2.11), we have the
following well-posedness result (analogous to the case without
mass).

Theorem 1. For any f ∈ L2loc(0, ∞), there exists a unique solution
vf (x, t) to the system (1.1)–(1.6). For any T > 0, the mapping
f ↦→ vf (x, T ) is a bounded map from L2(0, T ) to H−1.

Our first main result is the following

Theorem 2. Let w ∈ L2M . For any τ > 0, there exists f ∈ L2(0, τ )
such that vf (x, τ ) = 0. Furthermore, there exists a constant C
independent of w so that

∥f ∥L2(0,τ ) ≤ C∥w∥L2M (0,ℓ). (1.7)

In the case N = 1, System (1.1)–(1.6) was previously con-
sidered by Hansen and Martinez. The authors proved the well-
posedness of the system in [9] and null controllability in [10].
Null controllability in the case N = 1 was also proved in [11].
The results of both papers [10] and [11] are based on analysis
of spectral properties of the generalized Sturm–Liouville operator
(operator A in Section 2). The methods in their papers cannot
easily be extended to our setting with N > 1.

Our second main result concerns identifiability of System
(1.1)–(1.6), where for simplicity for all j we set qj = 0 and
kj = cj = c̃j = 1. We introduce the response operator RT as the
dynamical Dirichlet-to-Neumann map: (RT f )(t) =

∂v0
∂x (0

+, t), 0 <

< T . We prove that for any T > 0, the response operator
niquely determines N, ℓ, and aj, Mj, for j = 1, 2, . . ., and ρj, for
= 0, 1, 2, . . . ,N . We also describe the algorithm reconstructing
hese parameters.

We conclude this section with a brief outline of the paper. In
ection 2, we state some facts about the spectral theory of the
ssociated Sturm–Liouville problem. Let λn, n ∈ N, be the eigen-
requencies for this problem, with associated unit eigenfunctions
n. The proof of our theoremmakes use of exact controllability re-
ults found in [3,4] for a related wave equation. The controllability
roblems for both the wave and the heat equation are reduced
o moment problems. The exact controllability of the wave equa-
ion implies minimality for the exponential family {eiλnt}, along
ith a certain estimate for the associated biorthogonal family.
result due to David Russell [12] then shows that {e−λ2

nt} is
inimal on L2(0, T ) for any T > 0, and gives an estimate for the
iorthogonal set associated with this family. A standard Fourier
eries argument allows us to solve the moment problem for the
eat equation. We also use an extension of the Russell result to
how that the control functions can be chosen to be more regular
han L2; this will be used when solving the inverse problem. The
iscussion of the wave equation and the moment problems is
ound in Section 3. In Section 4 we solve our inverse problem
sing the ideas of the boundary control (BC) method. First, from
T we reconstruct the so-called spectral data of System (1.1)–
1.6), the set {λ , ϕ′ (0)}. Then we recover the parameters of
n n D

2

he system using the results concerning the inverse problem for
he corresponding string equation with attached masses [13]. To
ur best knowledge it is the first result concerning the inverse
roblem for the heat equation with strong singularities.

. Sturm–Liouville problem and associated Sobolev spaces

We estimate some simplifying notation. Let Mj = c̃jM̃j, and
efine ρ(x) by ρ(x) = cj(x)ρj(x) for x ∈ (aj, aj+1), and similarly
efine q(x), k(x). Then the associated Sturm–Liouville problem is:

−(kφ′)′ + qφ = ρλ2φ, x ∈ (0, ℓ) \ {aj}N1 , (2.8)
φ(ℓ) = φ(0) = 0,

φ(a−

j ) = φ(aj) = φ(a+

j ),

(a+

j )φ
′(a+

j ) − k(a−

j )φ
′(a−

j ) = −λ2Mjφ(aj), j = 1, . . . ,N. (2.9)

ssociated to this problem is the Hilbert space L2M (0, ℓ) :=
2(0, ℓ) ⊕ RN , which is defined as the completion of smooth
unctions on [0, l] in the norm

v∥L2M
=

[ N∑
j=0

(∫ aj+1

aj

|v(x)|2 ρ(x)dx
)
+

N∑
j=1

Mj|v(aj)|2
]1/2

.

enote by ⟨·, ·⟩L2M
the associated inner product.

Let {λ2
n}

∞

n=1 be the set of eigenvalues of System (2.8)–(2.9),
isted in increasing order. Define ℓop,j be the optical length of the
nterval (aj, aj+1):

op,j =

∫ aj+1

aj

√
ρ(x)
k(x)

dx,

so the optimal length of the string is ℓop := ℓop,0 + · · · +

ℓop,N . Taking (possibly complex) square roots, we then define the
associated eigenfrequencies Λ := {λn : n = ±1, ±2, . . .}. Define
K := Z \ {0}.

In [4] the following statements are proven.

Theorem 3. (A) Let Λ′ be any subset of Λ obtained by deleting 2N
elements. Then Λ′ can be reparametrized as

Λ′
=

N
∪
j=0

{λ(j)
m }m∈K,

where for each j,

|λ(j)
m −

πm
ℓop,j

| = O(|m|
−1). (2.10)

(B) The eigenvalues of System (2.8)–(2.9) are simple.

An immediate consequence of this theorem is that the fre-
uencies are not uniformly separated, which makes the methods
sed in [14] or [15] not easy to apply.
We now define quadratic form

(u, v) =

N∑
j=0

∫ aj+1

aj

[k(x)u′(x)v′(x) + q(x)u(x)v(x)] dx,

ith domain

= {u ∈ L2M (0, ℓ) : u|(aj,aj+1)∈ H1(aj, aj+1),

(a−

j ) = u(aj) = u(a+

j ) ∀j, u(0) = u(ℓ) = 0}.

sing [16, Theorem VIII.15], one can associate with this semi-
ounded, closed form the self-adjoint operator A in L2M (0, l), with
perator domain

2
(A) = {u ∈ Q : Au ∈ LM (0, ℓ)}.
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hen for u ∈ D(A),

u(x) =

{
−(ku′)′(x) + q(x)u(x), x ̸= aj, j = 1, . . . ,N,

1
Mj

(
(ku′)(a−

j ) − (ku′)(a+

j )
)
, x = aj, j = 1, . . . ,N.

Let {ϕn}
∞

n=1 be the set of normalized eigenfunctions of A. By the
implicity of the spectrum and the self-adjointness of A we have
hat this set is orthonormal with respect to ⟨·, ·⟩L2M

. It is easy to

heck that ϕn solves the system (2.8)–(2.9) with λ = λn. The
ollowing result was proven in [4]:

ϕ′

n(0)| ≤ Cn, (2.11)

here C is independent of n. We remark in passing that unlike
he standard Sturm Liouville problem with Mj = 0 for all j, it is
ot always the case that |ϕ′

n(0)| ≍ n; see [2–4,6,17] for details.
We use the spectral representation to create a scale of Sobolev-

ike spaces:

p = {u(x) =

∞∑
n=1

anφn(x) : ∥u∥2
p =

∞∑
n=1

|an|2(λ2
n + E)p < ∞},

p ∈ R.

ere the constant E is chosen so that λ2
n +E > 0 for all n, and the

nfinite sums are understood to be the completion of finite sums
ith respect to the norm ∥·∥p. Thus H0 = L2M (0, l) and H2 = D(A).
ssociated to these spaces are various symmetric compatibility
onditions at x = aj. To give an example, any eigenfunction φ is
n Hn for all n, so that for each j we have
1
Mj

(
(kφ′)(a−

j ) − (kφ′)(a+

j )
)

= λ2φ(aj) = φ′′(a−

j ) + (qφ)(a−

j )

= φ′′(a+

j ) + (qφ)(a+

j ).

or more details on these compatibility conditions, the reader is
eferred to [4].

. Controllability as a moment problem

.1. Associated wave equation

In what follows, we will write j ≥ 0 to mean j = 0, . . . ,N , etc.
onsider the following system, which models a vibrating string
ith attached masses.

ρ(x)
∂2uj

∂t2
− (

∂

∂x
k(x)

∂uj

∂x
) + q(x)uj = 0, t > 0, x ∈ (aj, aj+1),

j ≥ 0, (3.12)
uj−1(a−

j , t) = hj(t) = uj(a+

j , t), j ≥ 1,

(3.13)

kj(a+

j )
∂uj

∂x
(a+

j , t) − kj−1(a−

j )
∂uj−1

∂x
(a−

j , t) = Mjh′′

j (t), Mj > 0, j ≥ 1,

uN (ℓ−, t) = 0,

uj(x, 0) =
∂uj

∂t
(x, 0) = 0, x ∈ (aj, aj+1), j ≥ 0,

hj(0) = h′

j(0) = 0, j ≥ 1,

u0(0+, t) = f (t), t > 0. (3.14)

or f ∈ L2(0, T ), the weak solution u can be realized as a function
f time with values in a generalized function space using the
ourier method, see [8, Section III.2]. In this section, we recall
roperties of solutions of the system (3.12)–(3.14), proven in [4].
enoting X ′ to be the dual of X , we define θ−1(0, a1) := {u ∈

H1(0, a1) : u(0) = 0}′. One of the most important features
of System (3.12)–(3.14) is that the attached masses will mollify
transmitted waves, so the system is well posed in asymmetric
spaces. This is reflected in the following
 s

3

Proposition 1. For any T > 0, let f ∈ L2(0, T ). There exists a
unique solution

uf
:= (u0, h1, u1, h2, . . . , hN , uN )

o System (3.12)–(3.14). We have

0 ∈ C([0, T ], L2(0, a1)) ∩ C1([0, T ], θ−1(0, a1))

nd for j = 1, . . . ,N we have

j ∈ C([0, T ];H j(aj, aj+1)) ∩ C1([0, T ],H j−1(aj, aj+1)).

urthermore, hj ∈ H j(0, T ) for each j.

Since f ∈ L2, the vector (u0, h1, . . . , hN , uN ) is not a classical
olution to the system.
We say the pair of functions (y0(x), y1(x)) is in the ‘‘reachable

et at time T ’’ if there exists f ∈ L2(0, T ) such that (uf (x, T ), uf
t

x, T )) = (y0(x), y1(x)). We wish to characterize the reachable sets.
o this end, we define

˜ 0 = ⊕
N
j=0H

j(aj, aj+1) ⊕ RN and
˜

−1 = θ−1(0, a1) ⊕
(
⊕

N
j=1H

j−1(aj, aj+1)
)
⊕ RN−1,

here the terms in RN will account for the position of the masses
t aj, j = 1, . . . ,N , while the terms in RN−1 will account for the
elocity of the masses at aj, j = 2, . . . ,N . Because h′

1 ∈ L2, we
annot discuss h′

1(T ) in our framework. For each j, the masses
mpose on (uf (x, T ), uf

t (x, T )) a set of equations that must hold at
= aj, provided uf and uf

t are sufficiently regular. One example
f this is uf (a−

j , T ) = hj(T ) = uf (a+

j , T ), which by (3.13) and
roposition 1 must hold for all j ≥ 2. In addition, the boundary
ondition at x = ℓ imposes further conditions. The collection of
uch equations satisfied by uf (x, T ) will be denoted C0

∗
, while the

ollection of equations for uf
t (x, T ) will be denoted C−1

∗
. These

paces are carefully described in [4]. We now define a Hilbert
pace Wi, for integers i = −1, 0, by

i = {φ ∈ W̃i : φ satisfies Ci
∗
}.

he following inclusions are valid (see [4]):

N ⊂ W0, HN−1 ⊂ W−1.

In [4] we proved the exact controllability of System (3.12)–
3.14) in asymmetric spaces:

heorem 4. Let N ≥ 1, and let T > 2ℓop. Then for any (y0, y1) ∈

0 ×W−1, there exists a control f ∈ L2(0, T ) such that the solution
f to (3.12)–(3.14) satisfies
f (·, T ) = y0, uf

t (·, T ) = y1.

urthermore,

f ∥2
L2(0,T ) ≍ ∥y0∥2

W0
+ ∥y1∥2

W−1
.

This result is sharp in the sense that the space of reachable
unctions W0 × W−1 is the largest possible.

orollary 1. For any T > 2ℓop, the system (3.12)–(3.14) is exactly
ontrollable with respect to the symmetric space HN × HN−1.

Corollary 1 implies certain important properties for the ex-
onential family of an associated moment problem, which we
iscuss now. For the rest of this section, we will assume for
implicity that the eigenvalues satisfy λ2

n > 0. If this were not
he case in what follows, it would suffice to replace sin(λt)/λ by

2 2
inh(|λ|t)/|λ| in the case λ < 0, and by t in the case λ = 0.
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We present the solution of System (3.12)–(3.14) in the form
of the series

uf (x, t) =

∞∑
n=1

an(t)ϕn(x). (3.15)

For any T > 0 and f ∈ L2(0, T ), standard calculations using the
eak solution formulation (see, e.g. [8, Ch. 3]) give for each n,

an(t) =
ϕ′
n(0)
λn

∫ t

0
f (τ ) sin λn(t − τ ) dτ ,

a′

n(t) = ϕ′

n(0)
∫ t

0
f (τ ) cos λn(t − τ ) dτ .

(3.16)

We set αn := λnan(T ), βn := a′
n(T ), and let ⟨·, ·⟩T be the

tandard complex inner product on L2(0, T ). Let f T (t) = f (T − t),
o

∫ T
0 f (t) sin(λ(T − t))dt = ⟨f T , sin(λt)⟩T . Using eit = cos(t) +

sin(t), we can rewrite (3.16) as

iαn + βn = ⟨f T , e−iλntϕ′

n(0)⟩T ,

iαn + βn = ⟨f T , eiλntϕ′

n(0)⟩T , ∀n ∈ N.

e define λ−n = −λn for n ∈ N. Similarly we set α−n = −αn,
nd β−n = βn for all n ∈ N. Define γn by

n = (−iαn + βn), ∀ n ∈ K. (3.17)

hen we have

f T , ϕ′

n(0)e
iλnt⟩T = γn, n ∈ K. (3.18)

ssigning terminal data to System (1.1)–(1.6) is equivalent to
ssigning values to {γn}, in which case (3.18) can be viewed
s a moment problem. We will be considering terminal data in
N ×HN−1, and hence we can write γn = δn/(λ2

n + E)(N−1)/2 with
δn} ∈ ℓ2. Thus we can rewrite the moment problem as

f T , (λ2
n + E)(N−1)/2ϕ′

n(0)e
iλnt⟩T = δn, n ∈ K. (3.19)

ith {δn} ranging over ℓ2. Since we have exact controllability with
espect to HN × HN−1, we can apply [8, Theorem III.3.10.b]; in
he notation of that theorem, r = −N + 1, ρn = (λ2

n + α)r/2, and
is defined by

Bf , φ⟩Hr−H−r =

∫ T

0
f (s)φ′(0, s)ds.

e conclude the family

= {(λ2
n + E)(N−1)/2ϕ′

n(0)e
iλnt : n ∈ K}

is minimal in L2(0, T ) for any T > 2ℓop, and the norms of
the elements of the biorthogonal family {ξ̃n} associated to E are
uniformly bounded: ∥ξ̃n∥L2(0,T ) ≤ C , with C independent of n.

roposition 2. For any T > 2ℓop, the family {ϕ′
n(0)e

iλnt : n ∈ K}

s minimal in L2(0, T ), and has a biorthogonal family {ξn} with

ξn∥L2(0,T ) ≤ C |n|N−1. (3.20)

roof. Let ξn = ξ̃n(λ2
n + E)(N−1)/2. Then this set is biorthogonal to

{ϕ′
n(0)e

iλnt}, and the estimate (3.20) follows from (2.10).

3.2. Proof of Theorem 2

We recall the associated exponential sets. List the eigenvalues
{λ2

n : n ∈ N} in increasing order, and then we set λ−n = −λn. In
he case where zero is not an eigenvalue, we set

= {ϕ′ (0)eiλnt : n ∈ K},
h n

4

while

Ep = {ϕ′

n(0)e
−λ2

nt : n ∈ N}.

If λ2
m = 0 for some m, then zero is a double frequency, and

Eh = {ϕ′

n(0)e
iλnt : n ∈ K \ {m, −m}} ∪ {ϕ′

n(0), ϕ
′

n(0) t},

hile

p = {ϕ′

n(0)e
−λ2

nt : n ∈ N \ {m}} ∪ {ϕ′

n(0)}.

To prove Theorem 2, we will use the following result.

roposition 3. Let T > 0. Suppose the family {ϕ′
n(0)e

iλnt : n ∈ K}

is minimal in L2(0, T ) with a biorthogonal family {ξn}. Then for any
τ > 0, the family

{ϕ′

n(0)e
−λ2

nt : n ∈ N}

is minimal in L2(0, τ ), and one can choose the associated biorthog-
onal family {θn : n ∈ N} to satisfy the estimates

∥θn∥L2(0,τ ) ≤ C∥ξn∥L2(0,T ) e
β|λn| (3.21)

with constants C, β independent of n.

This result is a slight generalization of a result found in
[8, Theorem II.5.20], which in turn is a generalization of the result
due to Russell, [12]. The proof will be provided in the Appendix.

We now prove Theorem 2. We present the solution of System
(1.1)–(1.6) in the form of the series

vf (x, t) =

∞∑
n=1

bn(t)ϕn(x) (3.22)

nd the initial data from (1.5), (1.6) in the form: w =
∑

∞

n=1 b
0
nϕn

with {b0n} ∈ ℓ2. For any T > 0 and f ∈ L2(0, T ), standard
alculations (see, e.g. [8, Ch. III]) demonstrate that, for each n ∈ N,

n(T ) = ϕ′

n(0)
∫ T

0
f (t) e−λ2

n(T−t) dt + e−λ2
nTb0n . (3.23)

hese equalities can be written as a moment problem

f T , ϕ′

n(0)e
−λ2

nt⟩T = bn(T ) − e−λ2
nTb0n, n ∈ N. (3.24)

e claim System (1.1)–(1.6) is spectrally controllable in time τ

ith respect to L2M (0, ℓ), meaning that for zero initial data in (1.4),
1.5), and any n ∈ N, there exists fn ∈ L2(0, τ ) such that
fn (x, τ ) = ϕn.

n fact, it is easy to see that fn = θn , ∀n.
The null controllability problem is equivalent to solvability of

3.24) with T = τ and bn(τ ) = 0, and clearly this moment
roblem is solved by the control

(t) = −

∞∑
n=1

e−λ2
nτb0n θn(t).

his series converges and, by (3.21), we have

f ∥L2(0,τ ) ≤ C∥w∥L2M
,

ompleting the proof of Theorem 1. This proves null controlla-
ility of System (1.1)–(1.6) in the time interval (0, τ ) with any
> 0. □
We now prove controllability with more regular control func-

ions. This will be necessary in the next section in solving the
nverse problem for our system. The following result is presented
s a remark in [15], and its proof is sketched there. Since this
esult is essential for us, we give a more detailed proof here.
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roposition 4. System (1.1)–(1.6) is spectrally and null control-
lable for any τ > 0 with control space H2

0 (0, τ ).

Proof. Fix τ > 0. We assume the eigenvalues are never zero
for the moment, giving the modifications necessary in the other
case at the end. We will prove null controllability, leaving the
adaptations necessary for spectral control to the reader. Adapting
the proof of Theorem 2, we will solve the moment problem

⟨f τ , ϕ′

n(0)e
−λ2

nt⟩τ = −e−λ2
nτb0n, n ∈ N (3.25)

with f ∈ H2
0 (0, τ ).

Let Λ0 be the set of eigenvalues {λ2
n} of System (2.8)–(2.9)

excluding zero if one of λn equals zero, and E be the closure in
L2(0, τ ) of finite linear combinations of exponentials ϕ′

n(0) e
−tλ2

n ,

λ2
n ∈ Λ0. The family E := {ϕ′

n(0) e
−tλ2

n , n : λn ∈ Λ0} is minimal.
Let {θn, n : λ2

n ∈ Λ0}, be the family biorthogonal to E constructed
in Proposition 3. It is a well known, see e.g. [15, p. 279], [18]
that E does not contain any polynomial in t . Then simple linear
algebra, which is left to the reader, allows to construct the func-
tions θ0, θ−1, θ−2 in the orthogonal complement to E, which are
biorthogonal to 1, t, t2 :

⟨θ0, 1⟩τ = ⟨θ−1, t⟩τ = ⟨θ−2, t2⟩τ = 1,

and all other corresponding scalar products are zero.
In what follows, we set cn = −λ4

ne
−λ2

nτb0n if λn ̸= 0 and
cn = −2b0n if λn = 0.

Case 1 If λn ̸= 0 ∀n, we consider now the moment problem
for a function h ∈ L2(0, τ ) :

⟨h, ϕ′

n(0)e
−λ2

nt⟩τ = cn, n ∈ N, (3.26)

supplemented with the conditions

⟨h, 1⟩τ = ⟨h, t⟩τ = 0. (3.27)

One can check that a solution to (3.26), (3.27) is given in the form

h(t) =

∞∑
n=1

cnθn(t) + c0θ0(t) + c−1θ−1(t), (3.28)

where the coefficients c0 and c−1 are determined by the equations

∞∑
n=1

cn⟨θn, 1⟩τ + c0 = 0,
∞∑
n=1

cn⟨θn, t⟩τ + c−1 = 0. (3.29)

Since b0n ∈ ℓ2, it follows from (3.21), (2.10), and the definition
of cn, that the sum (3.28) converges in L2(0, τ ), and the series in
(3.29) converge absolutely.

Case 2 If λm = 0 for some m ∈ N, we consider the following
moment problem for a function h :

⟨h, ϕ′

n(0)e
−λ2

nt⟩τ = cn, n ∈ N, n ̸= m; ⟨h, t2⟩τ = cm, (3.30)

supplemented with the conditions (3.27). The solution of (3.30),
(3.27) is presented by

h(t) =

∞∑
n̸=m

cnθn(t) + c0θ0(t) + c−1θ−1(t) + c−2θ−2(t),

where the coefficients c0, c−1 and c−2 are determined by equa-
tions

∞∑
cn⟨θn, 1⟩τ + c0 = 0,

∞∑
cn⟨θn, t⟩τ + c−1 = 0,
n̸=m n̸=m

5

∞∑
n̸=m

cn⟨θn, t2⟩τ + c−2 = 2cm.

In both cases, one can then easily verify that the function

f τ (t) =

∫ t

0
(t − s)h(s) ds (3.31)

solves (3.25), and evidently f ∈ H2
0 (0, T ). □

Remark 1. It is possible to strengthen Proposition 4 to proof null
controllability with Hn

0 (0, τ ) controls for any n ∈ N by adapting
the arguments of this paper.

Remark 2. An analogous result is proven [4], also see [19], for
the vibrating strings with attached masses. To state this result
more precisely, let us first we assume that the λn are all non-zero.
Recall we have chosen the constant E so that the operator A + E
is strictly positive. Define Wj = (A + E)−1Wj−2, and let p ∈ N.
In [4], Theorem 7.6, it is stated that for T > 2ℓop, the system
(1.1)–(1.6) with state spaceWp×Wp−1 is exactly controllable with
controls in Hp

0 (0, T ), but there is a gap in the proof there that we
will correct with this paragraph. It was proven in ([20], Theorem
3) that for T > 2ℓop, the family of generalized exponential divided
differences composed of

{eiλnt : n ∈ K} ∪

(
p
∪
j=0

{t j}
)

forms a Riesz sequence in L2(0, T ). As a consequence, in the proof
of Theorem 7.6 [4], the function f (in the notation of that paper)
can be chosen so that ⟨f T , t j⟩T = 0, j = 0, . . . , p − 1, and this
validates the identity dpg

dtp = f in that paper. The rest of the
rgument proceeds as in that paper. Thus Theorem 7.6 is proven
nly for T > 2ℓop, and not sometimes for T = 2ℓop as stated there.

4. Inverse problem

Let T > 0. We consider the following special case of (1.1)–(1.6)

ρj(x)
∂vj

∂t
−

∂2vj

∂x2
= 0, t > 0, x ∈ (aj, aj+1), j = 0, . . . ,N, (4.32)

vj−1(a−

j , t) = hj(t) = vj(a+

j , t), j = 1, . . . ,N,

Mjh′

j(t) =
∂vj

∂x
(a+

j , t) −
∂vj−1

∂x
(a−

j , t), j = 1, . . . ,N,

vN (ℓ−, t) = 0,
vj(x, 0) = 0, x ∈ (aj, aj+1), j = 0, . . . ,N,

hj(0) = 0, j = 1, . . . ,N,

v0(0+, t) = f (t), t > 0. (4.33)

In what follows, we will drop the j subscript from ρj, vj without
any confusion.

To state our inverse problem, define the response operator, RT ,
by

(RT f )(t) = vf
x (0, t), t ∈ (0, T ).

An exercise in Fourier series, but also see [21, Eq. 9.17 on p.198],
shows that RT , defined classically on smooth functions vanishing
to infinite order at t = 0, extends to a continuous mapping
L2(0, T ) ↦→ H−1(0, T ); here H−1(0, T ) is the dual of H1

0 (0, T ). Our
dynamical inverse problem is to recover l,N, {aj}, {Mj}, and ρ,
from RT .

A key step in the procedure below is to recover the spectral
data {λ2

n, ϕ
′
n(0)} associated to the system. The spectral data is

obtained by a variational argument, but to justify this argument
we must first prove some regularity results.
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From (3.23), (2.10) and (2.11) it follows that {bn(T )} ∈ ℓ2 if
f ∈ H1

0 (0, T ), and so vf (·, T ) ∈ L2M . Therefore, the control operator

UT
: L2(0, T ) ↦→ L2M , UT f = vf (·, T )

s well defined for f ∈ H1
0 (0, T ). We define the connecting operator

CT in L2(0, T ) as CT
= (UT )∗UT or, equivalently, by its bilinear

orm

CT f , g)L2(0,T ) = ⟨vf (·, T ), vg (·, T )⟩L2M , f , g ∈ H1
0 (0, T ).

By (3.22) and (3.23) with b0n = 0, we have

vf (x, t) =

∞∑
n=1

ϕn(x)ϕ′

n(0)
∫ t

0
f (s)e−λ2

n(t−s)ds.

If f ∈ H1
0 (0, T ), then for all n with λn ̸= 0 we have∫ t

0
f (s)e−λ2

n(t−s)ds =
1
λ2
n

(
−

∫ t

0
f ′(s)e−λ2

n(t−s)ds + f (t)
)

. (4.34)

Thus, t ↦→ vf (x, t) is a continuous mapping [0, T ] to L2M (0, l), and

⟨CT f , g⟩H−1(0,T )−H1
0 (0,T )

= ⟨vf (·, T ), vg (·, T )⟩L2M , ∀f , g ∈ H1
0 (0, T ).

(4.35)

Our test functions for the variational argument will be in H2
0 (0, T ).

Supposing f ∈ H2
0 (0, T ), then by using (4.34), we have

f
t (x, t) =

∞∑
n=1

ϕn(x)
ϕ′
n(0)
λ2
n

(
−

∫ t

0
f ′′(s)e−λ2

n(t−s)ds + f ′(t)
)
,

and the estimate⏐⏐ ∫ t

0
f ′(s)e−λ2

n(t−s)ds
⏐⏐ ≤ C

∥f ′
∥L2(0,T )

n

hows that t ↦→ v
f
t (·, t) = vf ′ (·, t) is a continuous map from [0, T ]

to L2M . Hence

⟨CT f ′, g⟩H−1(0,T )−H1
0 (0,T )

= ⟨v
f
t (·, T ), v

g (·, T )⟩L2M , ∀f , g ∈ H2
0 (0, T ).

(4.36)

The following result is well known for the parabolic equations
with regular coefficients [14,22].

Proposition 5. The operator CT can be explicitly expressed through
the response operator:

CT
= (ZT )∗Y 2TR2TZT , (4.37)

where ZT
: L2(0, T ) ↦→ L2(0, 2T ) is given by the extension operator

(ZT f )(t) = f (t) for t ∈ [0, T ] and zero otherwise. Its adjoint, acting
from L2(0, 2T ) to L2(0, T ), coincides with the restriction operator
(ZT )∗f = f |[0,T ]. Also (Y 2T f )(t) = f (2T − t), t ∈ [0, 2T ].

Proof. We define the function ζ (s, t) = ⟨vf (·, s), vg (·, t)⟩M for
f , g ∈ H1

0 (0, T ), and extend f by zero for t ∈ [T , 2T ]. Clearly,
CT f , g)L2(0,T ) does not depend on the extension of f . We will use
he fact that ζ (T , T ) = (CT f , g)L2(0,T ). Because ρvt = vxx,

t (s, t) − ζs(s, t) =

∫ ℓ

0
[vf (x, s)vg

t (x, t) − vf
s (x, s)v

g (x, t)]ρ(x) dx

+

∑
j

Mj[v
f (aj, s)v

g
t (aj, t) − vf

s (aj, s)v
g (aj, t)],

= [vf (x, s)vg
x (x, t) − vf

x (x, s)v
g (x, t)]ℓx=0,

= (RT f )(s)g(t) − f (s)(RTg)(t).
6

The following boundary conditions hold for ζ : ζ (s, 0) = ζ (0, t) =

0, so solving for ζ by the method of characteristics, we get

ζ (s, t) =

∫ s+t

s
[(RT f )(ξ )g(s + t − ξ ) − f (ξ )(RTg)(s + t − ξ )] dξ,

s, t ≤ T .

Therefore,

ζ (T , T ) =

∫ 2T

T
[(RT f )(ξ ) g(2T − ξ ) − f (ξ ) (RTg)(2T − ξ )] dξ

=

∫ T

0
[(Rf )(2T − ξ ) g(ξ ) − f (2T − ξ ) (Rg)(ξ )] dξ

=

∫ T

0
(Rf )(2T − ξ ) g(ξ ) dξ .

From this, (4.37) easily follows.

The operator CT serves as a model for the operator A in the
space of controls L2(0, T ). Based on the mini-max principle and
using the spectral controllability of our system (Proposition 4),
one can recover the spectral data {λn, ϕ

′
n(0)}, n ∈ N of operator

A using the connecting operator CT . This important result of the
boundary control method is described in a series of papers (see,
e.g. [14,22,23]). We demonstrate how to adjust this technique to
our situation, and show we can recover the spectral data from RT .
Suppose fn ∈ H2

0 (0, T ) satisfies UT fn = ϕn. It is well known that
{λ2

n, ϕn} can be recovered from A using the mini-max principle. In
our case, A is not known, but below we show how CT can be used
to find {λ2

n, fn}, adapting an argument found in [14,22,23]. Since
ϕn ∈ H1, we have

⟨CT f ′

n, fn⟩H−1(0,T )−H1
0 (0,T )

= ⟨vf ′n (·, T ), ϕn⟩L2M

= ⟨v
fn
t (·, T ), ϕn⟩L2M

= ⟨Avfn (·, T ), ϕn⟩H−1−H1

= λ2
n.

This, along with (4.35), allows one to use a variational argu-
ment parallel to the minimax argument for A to compute the set
{λ2

n, fn}. Finally, by the definition of RT , we have

RT fn(T ) = vfn
x (0, T ) = ϕ′

n(0).

Knowing the spectral data, we can construct the connecting
operator CT

w for the wave equation with masses, System (3.12)–
(3.14) with k = 1, q = 0. Specifically, by (3.15), (3.16), we have
for f , g ∈ L2(0, T ),

(CT
wf , g)L2(0,T ) := ⟨uf (·, T ), ug (·, T )⟩L2M =

∞∑
n=1

afn(T ) a
g
n(T )

=

∞∑
n=1

⏐⏐⏐⏐ϕ′
n(0)
λn

⏐⏐⏐⏐2 ∫ T

0
f (t) sin λn(T − t) dt

∫ T

0
g(t) sin λn(T − t) dt.

By (2.10), (2.11), the series is absolutely convergent and bounded
above by a constant times ∥f ∥L2(0,T ) ∥g∥L2(0,T ).

From the operator CT
w one can recover ℓ,N, aj,Mj, for j =

1, . . . ,N , and ρ(x). The algorithm is described in [13, Section 4].

Conclusions

We have proved null controllability and solved an inverse
problem for the heat equation with the presence of a finite
number of strong singularities. Our approach combines dynamical
and spectral methods (i.e. frequency and time domain methods)

and uses connections between controllability/identifiability of the
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ppendix

Here we present a more general version of Proposition 3,
overing vector valued exponentials. This version is a slightly
odified version of [8, Theorem II.5.20]. The modifications serve

o handle the special cases where there exist non-positive eigen-
alues, and also to clarify the exposition and correct some mis-
rints.
Recall we list the eigenvalues {λ2

n : n ∈ N} in increasing order,
and then we set λ−n = −λn. Given a Hilbert space V , of a finite
or infinite dimension, let ηn ∈ V for all n ∈ N, and set η−n = ηn.
n the case where zero is not an eigenvalue, we set

h = {ηneiλnt : n ∈ K},

hile

p = {ηne−λ2
nt : n ∈ N}.

f λ2
j = 0 for some j ∈ N, then zero is a double frequency, and

h = {ηneiλnt : n ∈ K \ {j, −j}} ∪ {ej, e−j}, ej := ηj, e−j := ηj t,

hile

p = {ηne−λ2
nt : n ∈ N \ {j}} ∪ {ηj}.

f course, for the purpose of this paper, it suffices to set ηn =
′
n(0).

roposition 6. Let T > 0. Suppose the family Eh is minimal in
2(0, T ; V ) with a biorthogonal family {ξn}. Then for any τ > 0,
he family Ep is minimal in L2(0, τ ; V ), and one can choose the
ssociated biorthogonal family {θn : n ∈ N} to satisfy the estimates

θn∥L2(0,τ ;V ) ≤ C∥ξn∥L2(0,T ;V ) e
β|λn| (A.38)

ith constants C, β independent of n.
7

roof of Proposition 6. The main ingredients of the proof are
Paley–Wiener Theorem-type argument and complex interpola-
ion, used to construct the biorthogonal set satisfying (A.38).

We denote the complex inner product on V by v0 · v1 and set

u0, u1⟩L2(0,T ;V ) :=

∫ T

0
u0(x) · u1(x) dx, u0, u1 ∈ L2(0, T ; V ).

e will first prove the proposition when all eigenvalues λ2
n are

onnegative. The modifications necessary in the other case will
e stated in the end. In either case, in what follows we denote
h = {en} and Ep = {ẽn}.
Step 1:
Introduce for m ∈ N entire functions

ˆm(z) :=

∫ T

0
e−iztξm(t)dt, z ∈ C,

nd set G̃m(z) = Ĝm(z) + Ĝm(−z), so G̃m is double the even part
f Ĝm. Clearly,

G̃m(z)∥V ≤
√
Tαme|z|T , αm = ∥ξm∥L2(0,T ;V ). (A.39)

e claim

˜m(λn) · ηn = δmn, m, n ∈ N, (A.40)

where δmn is the Kronecker delta function. The claim follows from
the following two calculations:

Ĝm(λn) · ηn =

∫ T

0
e−iλntξm(t) · ηn dt = ⟨ξm, en⟩L2(0,T ;V ) = δmn,

ˆm(−λn) · ηn =

∫ T

0
eiλntξm(t) · ηn dt = ⟨ξm, e−n⟩L2(0,T ;V ) = 0.

dding these two equations gives (A.40).
Step 2: We wish to relate the minimality of the exponential

amilies associated to {λn} and {iλ2
n}. It is thus natural to pass from

unctions of z to functions of z2. Since G̃m is an even function, it
ay be represented as a power series of even powers of z, so the

unction

m(k) := G̃m(
√
k/i)

is well defined as an entire function. Then by (A.39), (A.40), there
exists C > 0 so that we have:

∥Qm(k)∥V ≤ C
√
T exp(T

√
|k|)αm, (A.41)

m(iλ2
n) · ηn = δmn. (A.42)

Step 3:
The functions ∥Qm∥V generally may be increasing on hori-

ontal lines. To make the upcoming Fourier transform argument
ossible, we multiply Qm by a function E(z) whose existence
nd properties are described in the following statement found in
attorini and Russell [15]. In what follows, we write z = x + iy

with x, y ∈ R.

Proposition 7. For every τ > 0, there exists a function E(z) of
exponential type such that its zeros are real and differ from zero; E
is real on the real axis, and there exist positive constants β and cj(τ )
such that

(i) |E(x)| ≤ c1(τ ) exp(−T
√

|x|)/(1 + |x|), (A.43)

ii) for y ≤ 0, |E(iy)| ≤ c1(τ ) exp(τ |y|), (A.44)

iii) for y ≥ 0, 1 ≥ |E(iy)| ≥ c3(τ ) exp(−β
√
y). (A.45)
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Fix τ > 0, and the corresponding function E, and define
Gm(z) := E(z)Qm(z), and then define

θm(t) :=
1

2πE(iλ2
m)

∫
R
e−istGm(s)ds. (A.46)

It follows from (A.41) and (A.43) that this Fourier transform con-
verges. The functions {θm} will give us our biorthogonal family.

Lemma 1. The functions θm have the following properties:
(A) The support of θm is in [0, τ ],
(B) ∥θm∥L2(0,τ ;V ) ≤ c(τ )αm exp(β|λm|).

Proof. The proof of part A is an adaptation of the proof of the
Paley–Wiener Theorem. By (A.41) and Proposition 7, the function
Gm is of exponential type. Choose any ϵ with 0 < ϵ < τ . We claim
there exists a constant C > 0, independent of m and y, such that
for y ≥ 0,

∥eiϵ(x+iy)Gm(x + iy)(x + iy + i)∥V < C .

This follows because (A.41), (A.43), and (A.45) allow us to apply
the Phragmén–Lindelöf Theorem in the two quarter spaces in C+.
It follows that∫
x∈R

∥eiϵ(x+iy)Gm(x + iy)∥2
V dx < C, ∀y ≥ 0,

with C independent of y. Hence, for t < −ϵ, we have by (A.46)
and deformation of integration contours,

2πE(iλ2
m)θm(t) =

∫
R
e−ix(t+ϵ)eixϵGm(x) dx

=

∫
R
e−i(x+iy)(t+ϵ)ei(x+iy)ϵGm(x + iy) dx.

Letting y → ∞, this last term vanishes, proving θm(t) = 0 for
t < −ϵ. A similar argument shows that θm(t) = 0 for t > τ + ϵ.
Letting ϵ → 0, part A follows.

Using part A of this lemma, formulas (A.46), (A.41) and prop-
erty (iii) of Proposition 7, we have

∥θm∥L2(0,τ ;V ) = ∥θm∥L2(R;V )

=
∥Gm∥L2(R:V )

√
2π |E(iλ2

m)|

≤

√
T/2π exp(β|λm|) c3(τ )−1c1(τ )

× αm
(∫

R
1/(1 + |s|)2ds

)1/2
.

This proves part B.
We now verify that {θm : m ∈ N} is biorthogonal to {e−tλ2

nηn :

n ∈ N} in the space L2(0, τ ; V ). We use the Fourier inverse
ormula, and then part A of the lemma, to get

m(s) = E(iλ2
m)

∫
R

θm(t)eist dt = E(iλ2
m)

∫ τ

0
θm(t)eist dt.

Hence by (A.42),

⟨θm, ẽn⟩L2(0,τ ;V ) =

∫ τ

0
θm(t) · e−λ2

ntηn dt

=
Gm(iλ2

n) · ηn

E(iλ2
m)

= Qm(iλ2
n) · ηn

E(iλ2
n)

E(iλ2
m)

= δmn.

The estimate (A.38) was proven in the part B of the lemma. We
have proven the proposition when all eigenvalues are positive.
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We now indicate how to adapt the argument in case we have
negative, but not zero, eigenvalues. If λ2

j = −γ 2, with γ > 0,
o that λj = iγ and λ−j = −iγ , then the proof of (A.40) goes as
follows:

Ĝm(λj) · ηj =

∫ T

0
eγ tξm(t) · ηj dt = ⟨ξm, e−j⟩L2(0,T ;V ) = 0,

ˆm(λ−j) · η−j =

∫ T

0
e−γ tξm(t) · ηj dt = ⟨ξm, ej⟩L2(0,T ;V ) = δmj.

dding these two equations again gives (A.40). The argument
bove then carries over until Proposition 7, where we must
rrange that E(x) does not vanish on any of the real roots of Qm.
f E vanishes on the set λm1 , . . . , λmp , then we can replace E(z)
y E(z)/(

∏p
k=1(z − λmk )), and the estimates in Proposition 7 still

old with possibly other constants cj(τ ). The rest of the proof of
he proposition carries through without change.

We now consider the case where one eigenvalue is zero, say
j = 0. Then we define Ĝm and G̃m for m ̸= j as in Step 1 and
ntroduce

ˆ j(z) :=

∫ T

0
e−iztξj(t)dt, and set G̃j(z) =

1
2

[
Ĝj(z) + Ĝj(−z)

]
.

ne can check that

˜m(λj) · ηj = ⟨ξm, ej⟩L2(0,T ;V ) = 0, j ̸= m,

˜ j(λm) · ηm =
1
2
[⟨ξj, em⟩L2(0,T ;V ) + ⟨ξj, e−m⟩L2(0,T ;V )] = 0, j ̸= m,

G̃j(λj) · ηj = ⟨ξj, ej⟩L2(0,T ;V ) = 1.
The rest of the proof of the proposition carries through without
change. □

Our proof works also in the case when λ2
j = 0 for some j ∈ N,

and the family Eh does not contain the element e−j(t) = ηj t .
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