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Abstract. A technique for measuring the mechanical properties of plasma-hardened wheel steel 

with nanoindentation is applied. The purpose of the work is to demonstrate and substantiate the 

serious differences between the mechanical properties and behavior of materials in nano-

volumes from those obtained in traditional macroscopic tests. The features of measuring 

mechanical properties – hardness, Young's modulus, elastic recovery – affecting the wear 

resistance of the surface layers of the material are given. Measurement of the physic mechanical 

properties of the material makes it possible to evaluate and select the optimal technology for 

surface modification by surface plasma hardening. It is noticed that the objectivity of 

determining the hardness, elastic modulus, elastic recovery and flow stress depends on the 

parameters of the measuring equipment used and strict adherence to the requirements for the 

imprint depth depending on the thickness of the hardened layer. The studies carried out on wheel 

steel samples from the rim and from the ridge of a railway wheel subjected to surface plasma 

hardening under the same conditions. The HV and H of the wheel rim are greater than the 

corresponding values of the flange, and the young modulus of the wheel flange, on the contrary, 

is greater for the flange. 

1.   Introduction 

Reliability and durability of machine parts and mechanisms operating under conditions of friction and 

wear, in many cases, is ensured by increasing the hardness of the surface layer. Under real operating 

conditions, minimization of wear depends on the elasticity and resistance to deformation of the surface 

layer not less than on hardness [1–5]. These properties are determined by the basic physical and 

mechanical characteristics of the surface layer, namely, hardness, elastic modulus and elastic recovery. 

These parameters are measured using instrumental indentation (nanoindentation) according to GOST R 

8.748-2011 (ISO 14577-1: 2015), and their change is possible by surface modification, for example, by 

plasma hardening. 

With the advent and development of the continuous measurement nanoindentation method, it became 

possible to quantify some important characteristics of metallic materials within individual 

submicroscopic zones, in particular, Vickers hardness, Young's modulus, flow stress, etc. Thus, in [6], 

nanoindentation aluminum alloys measured the submicrocrystalline hardness. 

Speaking about the physical nature of nanohardness, it should be said that, despite the increased 

amount of information obtained by nanoindentation, the physical justification of micromechanisms of 



RusMetalCon 2020

IOP Conf. Series: Materials Science and Engineering 969 (2020) 012037

IOP Publishing

doi:10.1088/1757-899X/969/1/012037

2

 

 

 

 

 

 

hardness remains poorly satisfactory. So, an example of the insufficiency of existing ideas about the 

nature of hardness is the problem of explaining the reasons for the large-scale size factor, which 

manifests itself in an increase in the number of hardness with a decrease in the load and dimensions of 

the print, especially at depths h <1 μm. An explanation of the reasons for the size factor by the dislocation 

plasticity mechanism by introducing the required number of dislocations did not lead to a resolution of 

the problem [7–9]. Formally, it is possible to introduce the required number of dislocations into the 

material under study, however, their density at h <100 nm becomes unrealistically large (>1014 sm-2). In 

addition, this contradicts the results of microstructural studies, which do not detect such a number of 

dislocations. Obviously, the mechanical properties and behavior of materials in nano-volumes can, for 

a number of reasons, differ greatly from those obtained in traditional macroscopic tests, since with the 

decrease in the size of the loaded region by many orders of magnitude, many new factors begin to affect 

the material properties. The localization of the load leads to a strong hardening of the material in the 

deformation zone and the resulting large stress gradients can strongly affect the mechanisms of plastic 

flow. Therefore, it is not clear in which direction the material moves from under the indenter. It is 

believed that in plastic materials the material flows from under the indenter towards the free surface. In 

fact, mass transfer is directed into the volume, which compacts the material in the zone of local 

deformation [10–12]. 

Currently, there is a lot of direct evidence of the growing role of nonequilibrium point defects in 

mass transfer with a decrease in the size of the contact spot. There is also convincing evidence of a 

significant change in the structure of materials under the indenter because of amorphization, phase 

transformations, and the formation of a nanocrystalline structure. However, in existing theories of 

hardness proceeding from dislocation mechanisms of plastic deformation, these circumstances are not 

taken into account and are not explained [13–16]. 

In addition to all this, due to the small size of the deformed region (~ h), large relative strain rates  

ε ~ v/h is realized even at small absolute penetration rates - v. As a result, the nanoscale hardness of a 

material can be two or more orders of magnitude higher than the yield strength. This implies the need 

to justify physical ideas about the nature of hardness, in general, and nanohardness, in particular. 

Experimental studies show that when working out the optimal regimes of plasma hardening, it is 

necessary to ensure a smooth change in structure and microhardness in depth. The solution to this 

problem is facilitated by the use of the nanoindentation method when studying the physic mechanical 

properties of plasma-hardened steel wheels.  

2.  Object and research methods  

In this work, the measurement of some mechanical characteristics of wheel steel subjected to surface 

plasma hardening was carried out using the UPNN-170 installation of the PlazmaCenter scientific and 

production company (St. Petersburg). 

Technical characteristics of the UPNN-170 installation: rated current – 120 A, rated operating 

voltage – not more than 42 V, argon consumption 5 l/min, cooling water consumption 180–220 l/h. 

Hardness was measured by nanoindentation at the Center for the Study of Material Properties of Tomsk 

Polytechnic University. 

Wheel steel is represented by two samples: sample No. 1 is cut from the rim, and sample No. 2 is 

from the crest of a railway wheel subjected to surface plasma hardening under the same conditions. 

Samples for research with dimensions of 20x30 mm were subjected to grinding and polishing on a 

LaboPol-5 machine. Because of electrochemical polishing, the height of surface irregularities did not 

exceed 10 nm. Processing and analysis of the obtained surface images was carried out using Nova 

software. During the experiment, a probe sensor of the SPMProdeNSC 15/AIBS type was used. The 

Vickers hardness thus determined is equal to the average pressure on the contact surface of the “indenter-

sample”. The hardness was measured at room temperature under continuous loading with a linearly 

increasing in time load up to 150 mH. 

The loading and unloading of the indenter, as well as the recording of the P-h diagram (applied load 

and indenter penetration depth) were carried out automatically. This method of measuring hardness, 
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called the method of kinetic hardness (continuous indentation of an indenter), allows one loading-

unloading cycle to determine the depth of unreduced hmax and recovered (plastic) h prints, Young's 

modulus, as well as the work of plastic and elastic deformation during indentation. Figure 1 shows the 

kinetics of the change in the load P and the penetration depth h of the indenter in the loading – unloading 

cycle (a) and the diagram of the dependence of the load P on the penetration depth h (b), where Pmax is 

the maximum load applied to the sample, hmax is the penetration depth of the indenter; hf –residual area 

after unloading. Аpl and Aerabot of plastic and elastic deformation, tgα is the slope of the linear part of 

the unloading part. 

 

Figure 1. Dependences of the load P and the penetration depth h of the indenter on time t in the  

loading - unloading cycle (a) and a diagram of the dependence of P on h (b).  

The maximum immersion depth of the indenter hmax using data from a tapping scanning probe 

microscopy measured the indenter footprint. The speed of loading and unloading the indenter was  

300 mH/min. To process the test results used the method of Oliver and Farr [10].  

The nanoindentation method consists in pressing an indenter with a diamond tip, with a load acting 

on it, into the surface layer of the material under study and determining the thickness of this layer using 

the software of a nanohardness meter. Processing of experimental data is carried out according to the 

results of measurements of at least 3 prints obtained under the same experimental conditions. Figure 2 

shows the indenter prints in the surface layer of the material at a certain distance from the surface. 

 

Figure 2. Imprint indenter in the near-surface layer of the material. 

The work of the NanoHardness Tester nanosolid hardness tester is that because of passing a current 

pulse through the coils located in the magnetic field of a permanent magnet, an electric field is created 

that presses on the indenter with a diamond tip. The indenter drops to a point on the surface of the sample 
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with a predetermined load. After the load on it has reached its maximum value, and the direction of the 

current of the coils is changing in the opposite direction, it returns to its original position. 

After the load reaches its maximum value, the indenter begins to unload, the load acting on it 

gradually decreases to zero, and he returns to his original position. In this case, the unloading curve is 

produced, which shows that upon indentation the sample is deformed elastically elastic, i.e. the material 

from under the indenter does not return to its former position to the end. The mismatch between the load 

and unload lines is probably due to inelasticity. 

3.  Results and discussion  

The results of determining the mechanical characteristics of plasma-hardened wheel steel according to 

are presented respectively in Table 1 for the wheel rim and in Table 2 for the wheel flange. Figure 3 

shows one of the experimental loading and unloading curves showing the indentation process on sample 

No. 1 from the rim of a railway wheel. Similar curves were obtained for sample No. 2 wheel flange. 

 

Figure 3. Loading (1) and unloading (2) curves for sample 1. 

The plot of diagram 2 (Figure 3) gives information related to the elastic properties of the material; it 

is caused by the relaxation of energy accumulated during elastoplastic deformation during indenter 

penetration. The mismatch of curves 1 and 2 indicates the presence of permanent deformation after 

completion of the indentation procedure. 

A comparison of the data in Tables 1 and 2 shows that the HV and H of the wheel rim are larger than 

the corresponding flange values, and the Young's modulus of the wheel flange, on the contrary, is larger 

for the flange compared to the rim (231.7–246.8). 

The results obtained complement well the data presented by other researchers [17–20].  

4.  Conclusion 

The objectivity of determining hardness, modulus of elasticity and elastic recovery depends on the 

parameters of the measuring equipment used and strict adherence to the requirements for the depth of 

the imprint depending on the depth of plasma hardening. 

The mechanical properties and behavior of materials in nano-volumes can be very different from 

those obtained in traditional macroscopic tests, since with a decrease in the size of the loaded region (by 

many orders of magnitude), many new factors begin to affect the material properties. 

The localization of the load leads to a strong hardening of the material in the deformation zone, the 

large stress gradients arising from this can strongly affect the mechanisms of plastic flow, and the 

structure of the materials under the indenter can significantly change because of amorphization, phase 

transformations, and the formation of a nanocrystalline structure. 
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Table 1. Mechanical characteristics of the wheel rim. 

N of 

experi 

ment 

Mechanical characteristics of the wheel 

rim at 20 μm deviation from the edge of 

the sample deep into the metal 

Mechanical characteristics of the wheel rim 

at 1700 μm deviation from the edge of the 

sample deep into the metal 

HV H, MPa E, GPa HV H, MPa E, GPa 

1 398.00 4222.86 217.32 466.22 4939.52 254.11 

2 385.32 4082.40 226.33 378.08 4005.66 245.44 

3 361.22 3827.01 211.70 373.25 3954.54 254.95 

4 389.10 4122.39 221.29 354.25 3753.25 245.98 

5 358.02 3793.15 229.06 383.95 4067.88 230.76 

6 395.26 4187.66 252.30 397.99 4216.62 248.90 

7 366.76 3885.80 243.07 385.83 4087.81 230.62 

8 386.15 4191.21 235.22 369.62 3916.01 261.58 

9 406.59 4307.70 233.89 398.50 4222.04 253.07 

10 463.92 3855.66 236.25 386.23 4092.04 251.74 

11 366.71 3885.21 242.59 – – – 

Aver. 388.80 4032.80 231.70 384.38 4072.39 241.41 

Table 2. Mechanical characteristics of the wheel flange. 

N of 

experi 

ment 

Mechanical characteristics of the wheel 

flange at 40 μm deviation from the edge 

of the sample into the metal 

Mechanical properties of the wheel flange at 

100 μm deviation from the edge of the 

specimen deep into the metal 

HV H, MPa E, GPa HV H, MPa E, GPa 

1 350.74 3715.99 287.72 392.01 4153.16 210.41 

2 354.93 3760.39 254.69 356.29 3774.81 210.65 

3 334.65 3545.52 219.53 387.87 4109.37 230.99 

4 365.16 3568.82 232.74 370.25 3922.27 241.84 

5 367.65 3895.16 239.30 375.79 3981.44 247.86 

6 – – – 366.42 3882.17 337.77 

Aver. 354.6 3697.2 246.8 374.77 3323.51 246.59 
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