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Abstract: Methods for the development of fuzzy and linguistic models of technological objects,
which are characterized by the fuzzy output parameters and linguistic values of the input and output
parameters of the object are proposed. The hydrotreating unit of the catalytic reforming unit was
investigated and described. On the basis of experimental and statistical data and fuzzy information
from experts and using the proposed methods, mathematical models of a hydrotreating reactor and a
hydrotreating furnace were developed. To determine the volume of production from the outlet of
the reactor and furnace, nonlinear regression models were built, and fuzzy models were developed
in the form of fuzzy regression equations to determine the quality indicators of the hydrotreating
unit—the hydrogenated product. To identify the structure of the models, the ideas of sequential
inclusion regressors are used, and for parametric identification, a modified method of least squares
is used, adapted to work in a fuzzy environment. To determine the optimal temperature of the
hydrotreating process on the basis of expert information and logical rules of conditional conclusions,
rule bases are built. The constructed rule bases for determining the optimal temperature of the
hydrotreating process depending on the thermal stability of the feedstock and the pressure in the
hydrotreating furnace are implemented using the Fuzzy Logic Toolbox application of the MatLab
package. Comparison results of data obtained with the known models, developed models and
real, experimental data from the hydrotreating unit of the reforming unit are presented and the
effectiveness of the proposed approach to modeling is shown.

Keywords: catalytic reforming; hydrotreating reactor; hydrotreating furnaces; fuzzy models; linguis-
tic models; hydrogenate; hydrogen-containing gas

1. Introduction

At present, the market of oil products of the Republic of Kazakhstan, as in other states,
dictates the intensive development of the processes of deep oil refining and the production
of high-quality and environmentally friendly motor fuels [1,2]. In this regard, there are
problems of optimizing the operating modes of technological objects of deep oil refining
according to economic and environmental criteria in the presence of various restrictions
arising in production. Increasing the productivity of deep oil refining technological facilities
and the quality of products is possible through optimal control of the operating modes of
technological facilities for the production of high-quality fuels based on modeling methods
and multi-criteria optimization [3].
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The process of formalizing and solving problems of developing mathematical models,
optimization problems in the presence of conflicting criteria, i.e., decision-making and man-
agement tasks for many technological objects of oil refining production, are complicated
by the multi-criteria and fuzzy initial information [4–6]. Under these conditions, a more
effective approach for solving these problems is the use of search methods of multicriteria
(vector) optimization [7,8] and the mathematical apparatus of the theory of fuzzy [6,8–10],
as well as the creation of a knowledge base and intellectualized decision support systems
for the optimal management of technological objects and processes [8,11–15]. Thus, the
development of mathematical support for intellectualized decision support systems for
the optimal management of oil refining facilities in a fuzzy environment based on the
knowledge and experience of experts are currently very important and urgent tasks of
science and oil refining.

Currently, all refineries use catalytic cracking and catalytic reforming process units for
the production of high-quality gasoline, which uses various catalysts and includes various
blocks and interconnected process units [3,16,17].

In this work, the objects of modeling are the main hydrotreating units of the catalytic
reforming unit of the LG-35-11/300-95 type, operating at the Atyrau refinery (AOR) since
1971 [18]. The design capacity of this unit was 300 thousand tons per year. As a result
of modernization carried out at the Atyrau refinery, the capacity has now been increased
to 450 thousand tons per year. The LG unit carries out the process of catalytic reforming
of straight-run gasoline from the primary oil refining unit, which is the most important
technological process of modern oil refining and petrochemistry. The catalytic reforming
unit LG-35-11/300-95 uses the catalysts UOP—S-12T (in the hydrotreating unit) and UOP—
R-56 (in the reforming unit).

In the investigated hydrotreating block of the catalytic reforming unit LG-35-11/300-95
of the Atyrau refinery for which the model is being built, an aluminum-cobalt-molybdenum
catalyst of the S–12T type, developed by the American company UOP, is used. The main
composition of this catalyst: aluminum oxide, which is a carrier of 65–75%; molybdenum
trioxide 13–23%; amorphous silicon dioxide 5–10%, as well as a small amount of cobalt
oxide 2–5%. The developed models take into account the nature of the specific catalyst UOP
S—12T of the reactor of the hydrotreating unit of the reforming unit of the Atyrau refinery.

Catalytic reforming is a process of catalytic aromatization, i.e., an increase in the
content of arenes as a result of the formation of aromatic hydrocarbons. This process,
like the process of catalytic isomerization of light alkanes, belongs to the hydrocatalytic
processes of reforming petroleum feedstock. The catalytic reforming unit is used for the
production of high-octane motor gasoline, aromatic hydrocarbons (feedstock for petro-
chemical synthesis) and hydrogen-containing gas (HCG) (technical hydrogen), and is used
in the hydrogenation processes of oil refining. Such catalytic reforming units are available
at almost all domestic and foreign refineries [19–21].

Thus, the object of study in this work is the hydrotreating unit of the catalytic reform-
ing unit LG-35-11/300-95 of the Atyrau refinery.

The aim of the study was to develop methods for constructing models of technological
objects in conditions of a deficit and indistinctness of the initial information, which are
the hydrotreating unit of the catalytic reforming unit using the available information of a
different nature. In addition, the goal is to develop mathematical models of the main units
of the hydrotreating unit of the catalytic reforming unit.

To ensure the achievement of the set goal, the following main tasks are solved in
the work:

- to develop methods for the development of mathematical models of technological
objects, which are characterized by the fuzziness of initial information;

- to develop mathematical models of the R-1 hydrotreating reactor in conditions of
deficit and indistinctness of initial information;

- to construct models of the F-101 hydrotreating furnace based on experimental and
statistical information.
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2. Materials and Methods
2.1. Brief Description of the Hydrotreating Unit of the Catalytic Reforming Cracking Unit
LG-35-11/300-95

The unit for catalytic reforming cracking LG-35-11/300-95 consists of 4 blocks, the
main of which is a hydrotreating unit and a reforming unit, which in turn have many
interconnected technological units. At the same time, the hydrotreating unit is designed
to purify straight-run gasoline coming from the primary oil refining unit from organic
compounds of sulfur, oxygen and nitrogen, and in the reforming unit, the process of
converting naphthenes and paraffin into aromatic hydrocarbons takes place.

In the hydrotreating unit, the process of hydrotreating straight-run gasoline from
the primary oil refining unit takes place. At the same time, the quality of straight-run
gasoline is improved due to the removal of sulfur, as well as other harmful compounds
and impurities from their composition, which worsen the operational characteristics of
technological equipment and metal units [22,23]. Thus, the hydrotreating process can
reduce corrosion of metal equipment and pollution of the environment and atmosphere.
Therefore, the study and improvement of the processes of hydrotreating oil refining on the
basis of scientifically grounded methods, for example, methods of mathematical modeling
and optimization, is an urgent task of science and practice of oil refining.

A brief description of the process flow diagram of the hydrotreating unit of the
catalytic reforming unit of the Atyrau refinery shown in Figure 1, is given.
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Figure 1. Technological scheme of hydrotreating unit at the catalytic reforming unit of the
Atyrau refinery.

Raw materials from the tank farm are fed by the A16 pump for mixing together with
the HCG. The mixture of raw materials and HCG is fed to 3 heat exchangers T-1/1-3
connected in series, here, due to the counterflow of carbonated raw materials from the
R-1 reactor and the T-3 reboiler, it is heated to a temperature of 260 ◦C, then it enters
the F-101 hydrotreating furnace. From the F-101 furnace, a mixture of feedstock and
gas with a temperature of 300–343 ◦C is fed to the hydrotreating reactor R-1, where the
feedstock hydrotreating reaction takes place with the participation of catalyst S-12, i.e., the
raw material is preliminarily hydrotreated from sulfur, nitrogen and oxygen-containing
compounds. The heat of the mixture of unstable hydrogenate, circulating gas from the
outlet of the reactor and the heat of reaction of gases with a temperature of 340–420 ◦C is
used to heat the mixture of raw materials and gas, first in the heat exchanger T-3 of the
stripping column C-1, then in the heat exchangers T-1/1-3 [18].

In gaseous form, the products after cooling in refrigerators XB-101 and X-1 to a
temperature of 35 ◦C are fed to the separator S-1. There HCG is separated from the liquid
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and for cleaning it from hydrogen it enters the absorber C-2. The gas from the outlet of this
absorber passes through the separator S-4, where it is divided into two streams:

(1) Circulating gas, which, after being compressed in the compressors, is fed back to the
feedstock hydrotreating system;

(2) Excessive HCG from the unit outlet.

The liquid phase of the separator S-1, passing through the heat exchanger T-2, is
heated to a temperature of 150 ◦C and fed to the 7, 9, 23 trays of the stripping column
C-1. From the stripping column C-1, from the hydrogenate at a temperature of up to
270 ◦C and a pressure of up to 15 atm, sulfuric hydrogen and water are stripped, and light
hydrocarbons are removed from the top of the column C-1.

After the stripping column C-1, the total composition of sulfur compounds in the
hydrogenation product according to the standard should not exceed 0.0005% by weight.
Gases in the state of steam from the top of the stripping column C-1 come out with a
temperature of 135 ◦C, then they pass through the chiller-condensers XB-101 and XK-1 and
with a temperature of 35–40 ◦C enter the separator S-2. From this separator S-2, the liquid
phase is returned to the stripper C-1. The settled water in the S-2 separator is discharged
into the sewer. Hydrocarbon gas from the S-2 separator for hydrogen sulfide removal enters
absorber C-3, and hydrocarbon gas from the top of absorber C-3 is fed to the fractionating
absorber C-6 of the reformer or the refinery’s fuel network.

Thus, in the process of hydrotreating, a chemical transformation of a substance occurs
under the influence of hydrogen gas with high pressure and high temperature. In the pro-
cess of hydrotreating, sulfur compounds are reduced in the composition of petroleum prod-
ucts, fuels, a saturation of additional unsaturated hydrocarbons occurs, the composition of
tar, oxygenated compounds decreases, as well as hydrocracking of hydrocarbon molecules.

Improving refinery hydrotreating processes using modeling methods allows [24]:

- to carry out hydrotreating processes in the optimal mode, which maximizes the
productivity of the facility and the yield of target products;

- to improve quality indicators of manufactured products.

This paper proposes an effective approach to the development of mathematical models
and modeling of technological objects on the example of units of the hydrotreating block of
the Atyrau refinery. A number of research works are known on methods of mathematical
modeling and optimization of technological objects and oil refining processes, including the
process of hydrotreating, for example [25,26]. However, in practice, production situations
can often arise associated with a shortage and indistinctness of initial information, problems
of modeling and optimization of their operating modes, the formulation and solution of
which using traditional methods do not provide adequate solutions. Such objects include
the hydrotreating unit of the LG unit at the Atyrau refinery, the main units of which operate
under conditions of uncertainty associated with randomness and with indistinctness of
initial information [27]. In this regard, it will be necessary to develop mathematical models
of the main hydrotreating unit the Atyrau refinery on the basis of a systematic approach,
i.e., using available information of various nature.

2.2. Development of Mathematical Models of Technological Objects Functioning in Conditions of
Indistinctness of Initial Information

To develop methods for constructing models of technological objects, which are
characterized by the fuzzy initial information, we use the methodology for modeling
complex objects in conditions of uncertainty and a hybrid approach to the development of
mathematical models, proposed by us elsewhere [27,28].

Of the various approaches to developing models based on fuzzy information, three
can be distinguished:

(1) an approach based on the idea of regression analysis, taking into account the fuzziness
of some part of the initial information;
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(2) an approach based on the use of logical rules for conditional inference, used in the
conditions of fuzzy input and output parameters of the object;

(3) combined approaches.

We turn to the study and description of the first approach based on the use of regres-
sion analysis taking into account fuzzy information. Using this approach, the structure of
the models is identified in the form of regression models with fuzzy coefficients. Fuzzy
models built on the basis of this approach are successfully used in modeling and control
of a number of chemical–technological systems of oil refining [3,4,27] and can be used to
model objects in other industries.

In this approach, the values of the input parameters xi, i = 1, n are quantitatively
measurable, and the values of the output parameters of the object ỹM

j , j = 1, m are immea-
surable, they can be evaluated by a specialist, a decision-maker (DM) unclearly based on
their experience, knowledge and intuition.

Under these conditions, the mathematical relationship between input and output
parameters, i.e., the model is obtained in the form of fuzzy regression equations:

ỹM
j = f̃ M

j (x1, . . . , xn) (1)

where ~—fuzzy operator.
Suppose that as a result of observing the operation of the object and the experiments

carried out, k values of the input parameters xi

(
xi1, i = 1, n, 1 = 1, k

)
were obtained, and

the corresponding fuzzy values of the output parameters ỹM
j

(
ỹM

j1 , j = 1, m, 1 = 1, k
)

were
estimated by experts.

Then, to build fuzzy models of this object, it is necessary to carry out the following
two stages of solving the identification problem.

Stage 1. Choose the structure of the function (structural identification):

ỹM
j = f̃ M

j (x1, . . . , xn, α̃0, . . . , α̃n), j = 1, k (2)

which corresponds to Equation (1).
At this stage, the qualitative analysis of the object is of decisive importance, as a result

of which the main parameters affecting the functioning of the object, their interrelationships,
the influence of these parameters on the optimization criteria are revealed. To determine
the structure of the model, you can use a fuzzy analog of the method of sequential inclusion
of regressors [28].

Stage 2. Determine the estimates of the parameters of the selected function (2), for
example, the values of fuzzy coefficients α̃0, . . . , α̃n, i.e., the problem of parametric identifi-
cation is being solved. For such an assessment, you can use the criterion of minimizing the
deviation of the fuzzy values of the output parameter ỹM

j obtained by the model from its
sample fuzzy values obtained on the basis of expert judgment ye

j :

R̃j = min
k

∑
I=1

(
ỹe

j1 − ỹM
j1

)2
= min

k

∑
I=1

(
ỹE

j1 − f̃ M
j1 (x1I , . . . , xn1, α̃01, . . . , α̃n1)

)2
(3)

Note that when calculating criterion (3), operations are performed on fuzzy sets and
numbers [4,6,9]. At this stage, the main questions are the choice of a method for estimating
unknown parameters that ensure the adequacy of the model.

In the general case, the fuzzy models obtained on the basis of this approach have
the form:

ỹM
j = α̃oj +

n

∑
i=1

α̃ijxij +
n

∑
i=1

n

∑
k=i

α̃ikjxij + . . . , j = 1, m (4)

Based on the set of level α (α ∈ [0, 1], Aα = {x : x ∈ X, µA(x) ≥ α}), the problem of
estimating the fuzzy coefficients of the model can be reduced to the classical problems
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of estimating the parameters of multiple regression equations using the idea of the least
squares method.

As a result of this approach, we obtain the values of the estimated coefficients of
various levels αq, q = 1, L− α

αq
ij .

To obtain the coefficients α̃ij, the obtained values α
αq
ij are combined:

α̃ij = U
α∈[0.5÷1]

αα
ij or µα̃ij

(
αij
)
= sup

α∈[0.1÷1]
min

{
αq, µ

αq
αij

(
αij
)}

.

The second approach is based on the use of logical rules for conditional inference.
This approach to modeling in a fuzzy environment is based on the use of logical rules for
conditional inference, which in general can be written:

IF x̃1 ∈ Ã1(x̃2 ∈ Ã2(, . . . , (x̃n ∈ Ãn), . . . , ) THEN ỹM
j ∈ B̃j, j = 1, m (5)

where x̃i
(
i = 1, n

)
, ỹM

j —respectively, the input and output linguistic variables of the object,

Ãi, B̃j—are the fuzzy subset characterizing x̃i, ỹM
j .

The advantage of this approach is the possibility of using it when modeling objects for
which the collection of statistical, quantitative information is very difficult or impossible.
In this case, the obtained models are the result of a survey of experts, decision-makers,
operating, as a rule, with information of a fuzzy nature. Such information, in the conditions
of the competence of specialists, allows the obtained models to take into account not
formalized internal interconnections of the parameters of the object.

Based on the two approaches described above, we propose the following methods for
constructing models, taking into account the fuzzy initial information.

2.3. A Method for Constructing Fuzzy Models Using Fuzzy Initial Information with Clear Input
and Fuzzy Output Parameters of the Object

Present and briefly describe the main stages of the Fuzzy Modeling (FM) method.
1. Select the input (mode—control) xi ∈ Xi, i = 1, n and output ỹj ∈ Yj, j = 1, m

parameters of the object necessary for building the model. In this case, the parameters that
are informative and affect the output parameters are selected as input parameters, and
those fuzzy parameters that assess the quality of the object’s operation are selected as the
output parameters;

2. To collect and process data on parameters xi ∈ Xi, i = 1, n and expert information,
which allows determining the term-set of fuzzy parameters T(X, Y), describing the state
and output of the object;

3. Determine the structure of fuzzy equations ỹj = f̃ j(x1, . . . , xn, ã0, ã1, . . . , ãn),
j = 1, m, i.e., solve the problem of structural identification. To identify the structure of the
models, we can recommend applying the method of sequential inclusion of regressors [28].

4. Construct the membership function of the fuzzy parameters of the object. Based on
practical experience, when constructing such functions, it is recommended to apply the
following structure with adjustable coefficients:

µ
p
Bj
(ỹj) = exp(Qp

Bj

∣∣∣∣(yj − ymdj
)

Np
Bj

∣∣∣∣) (6)

where µ
p
Bj
(ỹj)—are the membership functions of fuzzy output parameters ỹj belonging to a

fuzzy set B̃j; p—quantum number; Qp
Bj

—coefficient, which is determined when identifying

the membership function and characterizing the degree of fuzziness; Np
Bj

—coefficient that
changes the domains of definition of terms and the shape of the graph of the membership
function of fuzzy parameters; yp

mdj
—is the fuzzy variable that most closely matches a given

term (in the quantum p) for this quantity µ
p
Bj
(ymdi) = max

j
µ

p
Bj
(yj). At this point, you can
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select the appropriate type of membership function and build them using the Fuzzy Logic
Toolbox application [29].

5. Identify fuzzy parameters of the function model (ã0, ã1, . . . , ãn), i.e., solve the
problem of parametric identification of fuzzy regression coefficients. The identification
of the parameters of fuzzy models can be carried out using a modification of the least
squares method for working in a fuzzy environment based on a set of level α from fuzzy
set theories, which allows for the transforming of a fuzzy problem into a system of clear
problems at different levels.

6. Check the conformity of the model to real data, i.e., the adequacy of the constructed
model. In this case, the following condition can be used as an adequacy criterion:

R = min
m

∑
j=1

(
yM

j − yE
j

)2
≤ RD

where yM
j —calculated (model), and yE

j —experimental (real) values of the object’s output
parameters, RD—permissible deviation.

If the adequacy condition is met, then the model is recommended for modeling and
determining the optimal operating modes of the object. Otherwise, the reason for the
inadequacy of the model is determined and the transition is processed to the corresponding
points of the described methodology. In this case, the reason for the inadequacy of the
model can be: not including some parameters in the model that significantly affect the
process; incorrect structural and/or parametric identification of the model, etc.

2.4. A Method for Constructing Linguistic Models with Fuzzy Values of the Input and Output
Parameters of the Object

We present and briefly describe the main stages of the method for the development of
linguistic models (LM).

This method implements the above described second approach to developing models
based on fuzzy information and is based on the use of linguistic variables that describe
the input and output parameters of the object. Some points of this method (1, 2 and 6)
are similar to the corresponding points of the FM method, but it is necessary to take into
account the fuzziness of the input parameters—x̃i, i = 1, m.

1. Select the input x̃i ∈ X, i = 1, n and output ỹj ∈ Y, j = 1, m parameters of the
object that are necessary for building the model, which are linguistic variables (X, Y—
universal sets);

2. On the basis of expert assessments, evaluate the values of the parameters x̃i, ỹj and
determine the term-set T(X, Y).

3. Construct membership functions of fuzzy parameters—µÃi
(x̃i), µB̃j

(ỹj) Ãi, B̃j—

fuzzy subsets Ãi ⊂ X, B̃j ⊂ Y). At this point, Equation (6) can be used as the structure of
the membership function, as well as in the FM method.

4. Build a linguistic model of the object and formalize fuzzy mappings that determine
the relationship between the parameters x̃i and ỹj—Rij. For the convenience of using fuzzy
mapping in the calculation, you should construct a matrix of connections between input
and output parameters with membership functions:

µRij
(x̃i, ỹj) = min[µAi

(x̃i), µBji
(ỹj), i = 1, n, j = 1, m].

5. Determine the fuzzy values of the object’s output parameters and select their
numerical values from the fuzzy set of solutions. Then, a linguistic model is built, with a
general structure as in (5), i.e.,

IF x̃1 ∈ Ã1(x̃2 ∈ Ã2(, . . . , (x̃n ∈ Ãn), . . . , ) THEN ỹM
j ∈ B̃j, j = 1, m

6. Check the conditions for the adequacy of the model. The adequacy of the model
can be checked both in the corresponding, i.e., 6-point of the FM method. If the model is
inadequate, find out the reason and return to the appropriate point to refine the model.
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3. Results
3.1. Building Models of the Reactor and Hydrotreating Furnace of the Catalytic Reforming Unit
Using Experimental-Statistical and Fuzzy Information

As a result of the research and processing of data results, it was established that to
determine the volume of production output, i.e., y1 hydrogenated product from the outlet
of the hydrotreating reactor of the R-1 unit, on the basis of experimental and statistical data,
it is possible to build a statistical model that, using a nonlinear regression equation, makes
it possible to estimate the values y1 (m3/h) from the input and operating parameters xi,
i = 1, 5. Input and operating parameters are: x1—the volume of raw materials, straight-run
gasoline (45–80 m3/h); x2—pressure in the reactor R-1 (20–35 kg/cm2); x3—temperature in
the reactor R-1 (300–343 ◦C); x4—volumetric feed rate (0.5–5 h−1); x5—circulating hydrogen-
containing gases (HCG)—hydrogen/hydrocarbon ratio (200–500 nm3). The intervals in
which the input and operating parameters change are indicated in brackets.

After structural (based on the method of sequential inclusion of regressors) and
parametric (using the least squares method based on the REGRESS software package)
identification, a mathematical model that allows us to determine the volume of hydrogenate
from the outlet of the reactor R-1, depending on xi, i = 1, 5, is obtained in the form:

y1 = 7.00 + 0.233x1 + 0.130x2 + 0.011x3 + 2.333x4 − 0.0175x5
+0.0031x2

1 + 0.0048x2
2 + 0.00003x2

3 + 0.7778x2
4 − 0.00004x2

5
+0.0017x1x2 + 0.00015x1x3 + 0.03111x1x4 + 0.00023x1x5
+0.08642x2x4 − 0.00065x2x5 + 0.00730x3x4

A graph of the dependence of the hydrogenated product output on the temperature
in the reactor x3 is plotted at fixed values of the remaining input, operating parameters: x1,
x2, x4 and x5 (Figure 2).
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Figure 2. Dependency graph y1 = f1(x3) for fixed x1, x2, x4 and x5 (x1—volume of raw materials,
80 m3/h, x2—pressure in R-1, 30 kg/cm2, x4—volumetric velocity, 3 h−1, x5—HCG circulation,
400 nm3).

In the process of developing mathematical models describing the qualitative indicators
of the produced hydrogenation (the content of unsaturated hydrocarbons, sulfur, water-
soluble acids and alkali in the hydrogenation product) at the Atyrau refinery, problems of
uncertainty related to the lack and unclearness of the initial information arose. Therefore, to
develop models for assessing the quality of hydrogenated products, a systematic approach
was applied using methods of expert assessments and theories of fuzzy sets based on the
methods proposed in Section 2 for constructing mathematical models under conditions of
fuzzy initial information.



Appl. Sci. 2021, 11, 8317 9 of 20

For this purpose, with the involvement of experts from the number of process opera-
tors, the head of the installation and researchers of the subject area, an expert assessment
of the influence of input and operating parameters on the quality of hydrogenated product
was carried out. As a result of processing experimental–statistical and expert information
using the fuzzy modeling method described in Section 3.1, the following structure of fuzzy
models was identified, describing the product quality of the R-1 hydrotreating reactor in
the form of fuzzy multiple regression equations:

ỹj = a0jxij +
5

∑
i=1

aijxij+
5

∑
i=1

5

∑
k=i

aijkxijxkj, j = 2, 4 (7)

where ỹ2 is the unsaturated hydrocarbons in the product, i.e., hydrogenated products,
which are characterized by indistinctness (should be no more, i.e., ≤̃1%); ỹ3—sulfur in
the hydrogenated product (≤̃0.00005%); ỹ4—water-soluble acids and alkalis in the hy-
drogenated product (=̃0%); The admissible fuzzy values of the hydrogenated product
quality indicators are indicated in brackets; xi, i = 1, 5—input, operating parameters of the
hydrotreating reactor, i.e., respectively, the volume of raw materials, pressure, temperature,
space velocity and circulation of HCG; ã0j, ãij, ãikj, i = 1, 5—parameters, fuzzy regression
coefficients subject to regression identification.

To identify unknown parameters (regression coefficients) of the model (7): ãij (i = 0, 5,
j = 2, 5) and ãikj (i,k =1, 5, j = 2, 5), the membership functions of fuzzy sets describing the
qualities of the hydrogenate are divided into the following sets of level α: α = 0.5; 0.85;
1. Since in our case the membership function has a bell-shaped form, the values of fuzzy
parameters at five points α = 0.5; 0.85 (left); 1; 0.85; 0.5 (right). The values of the input,
mode xij, i, j = 1, 5 and output ỹ2, ỹ3, ỹ4 parameters for each selected α level are observed.

Thus, we obtained models describing the quality of the product from the outlet of
the R-1 reactor in the form of multiple regression for each α level. Since the obtained
equations have the form of regression equations, the problem of identifying their unknown
coefficients α

αq
ij , i = 0, 5, j = 2, 4, q = 1, 3 can be solved using known methods of

parametric identification, for example, using the least squares method. In this work, to
identify the regression coefficients, the REGRESS program package was used, which, based
on modified least squares methods, allows one to determine the regression coefficients of
linear and nonlinear regression models with any number of input parameters xi, i = 1, n.

Thus, after parametric identification, mathematical models describing the influence of
input, operating parameters xi, i = 1, 5 on the quality of the hydrogenated product, i.e.,
on the content of unsaturated hydrocarbons (ỹ2), sulfur (ỹ3) and water-soluble acids and
alkalis (ỹ4) for each α level have the form:

y2 =
(

0.5
0.05 + 0.85

0.07 + 1
0.08 + 0.85

0.09 + 0.5
0.095

)
−
(

0.5
0.00215 + 0.85

0.0029 + 1
0.00324 + 0.85

0.00375 + 0.5
0.00425

)
x1

+
(

0.5
0.00591 + 0.85

0.00592 + 1
0.00593 + 0.85

0.00594 + 0.5
0.00595

)
x2 +

(
0.5

0.0002 + 0.85
0.0005 + 1

0.0007 + 0.85
0.00095 + 0.5

0.0013

)
x3

+
(

0.5
0.03125 + 0.85

0.04333 + 1
0.05333 + 0.85

0.06333 + 0.5
0.007333

)
x4 +

(
0.5

0.0004 + 0.85
0.0005 + 1

0.0006 + 0.85
0.0007 + 0.5

0.0008

)
x5

−
(

0.5
0.00002 + 0.85

0.00003 + 1
0.00004 + 0.85

0.00005 + 0.5
0.00007

)
x2

1 +
(

0.5
0.00021 + 0.85

0.00022 + 1
0.00023 + 0.85

0.00024 + 0.5
0.00025

)
x2

2

+
(

0.5
0.00012 + 0.85

0.00018 + 1
0.00023 + 0.85

0.00028 + 0.5
0.00033

)
x2

3 −
(

0.5
0.01675 + 0.85

0.01727 + 1
0.01777 + 0.85

0.01713 + 0.5
0.01818

)
x2

4

+
(

0.5
0.000008 + 0.85

0.000014 + 1
0.00002 + 0.85

0.00003 + 0.5
0.00005

)
x2

5 −
(

0.5
0.0003 + 0.85

0.00035 + 1
0.0004 + 0.85

0.00045 + 0.5
0.0005

)
x1x2

+
(

0.5
0.000024 + 0.85

0.00003 + 1
0.000033 + 0.85

0.00004 + 0.5
0.000047

)
x1x3 −

(
0.5

0.00068 + 0.85
0.0007 + 1

0.00073 + 0.85
0.00075 + 0.5

0.00077

)
x1x4

+
(

0.5
0.000012 + 0.85

0.000019 + 1
0.000027 + 0.85

0.000035 + 0.5
0.000043

)
x1x5 −

(
0.5

0.00083 + 0.85
0.0009 + 1

0.00098 + 0.85
0.0001 + 0.5

0.0015

)
x2x4

+
(

0.5
0.000005 + 0.85

0.000006 + 1
0.000007 + 0.85

0.000008 + 0.5
0.000009

)
x2x5 −

(
0.5

0.0001 + 0.85
0.00015 + 1

0.00012 + 0.85
0.00015 + 0.5

0.00018

)
x3x5;
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y3 =
(

0.5
0.002 + 0.85

0.003 + 1
0.004 + 0.85

0.005 + 0.5
0.006

)
−
(

0.5
0.00014 + 0.85

0.00015 + 1
0.00016 + 0.85

0.00017 + 0.5
0.00018

)
x1

+
(

0.5
0.00027 + 0.85

0.00028 + 1
0.00029 + 0.85

0.0003 + 0.5
0.00031

)
x2 +

(
0.5

0.00002 + 0.85
0.00003 + 1

0.00004 + 0.85
0.000045 + 0.5

0.0005

)
x3

+
(

0.5
0.00044 + 0.85

0.0005 + 1
0.00053 + 0.85

0.00054 + 0.5
0.00055

)
x4 +

(
0.5

0.000002 + 0.85
0.0000025 + 1

0.000003 + 0.85
0.0000035 + 0.5

0.000004

)
x5

−
(

0.5
0.000001 + 0.85

0.0000015 + 1
0.000002 + 0.85

0.0000025 + 0.5
0.000003

)
x2

1 +
(

0.5
0.00001 + 0.85

0.000015 + 1
0.00002 + 0.85

0.000025 + 0.5
0.00003

)
x2

2

+
(

0.5
0.00015 + 0.85

0.00017 + 1
0.00018 + 0.85

0.00019 + 0.5
0.0002

)
x2

4 +
(

0.5
0.00002 + 0.85

0.00003 + 1
0.00004 + 0.85

0.00005 + 0.5
0.00006

)
x1x2

+
(

0.5
0.000001 + 0.85

0.000009 + 1
0.00001 + 0.85

0.00002 + 0.5
0.00003

)
x1x3 −

(
0.5

0.00007 + 0.85
0.00013 + 1

0.00018 + 0.85
0.00023 + 0.5

0.00030

)
x1x4

+
(

0.5
0.00001 + 0.85

0.00009 + 1
0.00010 + 0.85

0.00020 + 0.5
0.00030

)
x2x3 −

(
0.5

0.00038 + 0.85
0.00044 + 1

0.00049 + 0.85
0.00054 + 0.5

0.00064

)
x2x4

+
(

0.5
0.000002 + 0.85

0.000003 + 1
0.000004 + 0.85

0.000005 + 0.5
0.000006

)
x3x4;

y4 =
(

0.5
0.00023 + 0.85

0.00024 + 1
0.00025 + 0.85

0.00026 + 0.5
0.00027

)
−
(

0.5
0.001 + 0.85

0.0015 + 1
0.002 + 0.85

0.0025 + 0.5
0.003

)
x1

+
(

0.5
0.00024 + 0.85

0.00032 + 1
0.00037 + 0.85

0.00042 + 0.5
0.005

)
x2 −

(
0.5

0.00003 + 0.85
0.00004 + 1

0.00005 + 0.85
0.00006 + 0.5

0.00007

)
x3

+
(

0.5
0.00659 + 0.85

0.00664 + 1
0.00667 + 0.85

0.00670 + 0.5
0.00675

)
x4 +

(
0.5

0.000002 + 0.85
0.000003 + 1

0.000004 + 0.85
0.000005 + 0.5

0.000006

)
x5

−
(

0.5
0.000001 + 0.85

0.000005 + 1
0.00001 + 0.85

0.000015 + 0.5
0.000020

)
x2

2 +
(

0.5
0.000207 + 0.85

0.000215 + 1
0.000222 + 0.85

0.000230 + 0.5
0.000330

)
x2

4

+
(

0.5
0.000001 + 0.85

0.000005 + 1
0.00001 + 0.85

0.000015 + 0.5
0.000020

)
x1x2 −

(
0.5

0.000005 + 0.85
0.00001 + 1

0.00002 + 0.85
0.00003 + 0.5

0.00004

)
x1x4

+
(

0.5
0.000004 + 0.85

0.000005 + 1
0.000006 + 0.85

0.000007 + 0.5
0.000008

)
x2x4 −

(
0.5

0.000001 + 0.85
0.000005 + 1

0.000001 + 0.85
0.0000015 + 0.5

0.00002

)
x3x4

+
(

0.5
0.0000001 + 0.85

0.0000005 + 1
0.0000010 + 0.85

0.0000015 + 0.5
0.0000020

)
x4x5.

The identified values of the coefficients a
αq
ij , i = 0, 5; j = 2, 4; q = 1, 3 are combined

using the following expression of the theory of fuzzy sets [6,9]:
aij = ∨

α∈[0.5,1]
a

αq
ij or µ ãij(aij) = SUP min

α∈[0.5,1]

{
α, µ aα

ij(aij)
}

, where a
αq
ij =

{
ai
∣∣µ ãij(aij)

}
In the obtained models, regressors that have no effect on the quality of the hydro-

genated product, i.e., on ỹ2, ỹ3 and ỹ4 or very little influence are set to zero, i.e., not shown.
Mathematical models of the F-101 hydrotreating furnace of the hydrotreating unit.
The cylindrical hydrotreating furnace F-101 is designed for heating the hydrotreating

product, i.e., gadrogenizate to the temperature required by the regulation. Based on the
results of research and analysis, the following main parameters were identified that affect
the operation of the F-101 furnace and the hydrotreating process:

x1—consumption, volume of raw materials at the entrance of the F-101 furnace, in the
range of 60 ÷ 80 m3/h;

x2—temperature at the inlet of the F-101 furnace, within the range of 170 ÷ 190 ◦C;
x3—pressure in the F-101 furnace, in the range of 40 ÷ 43 kg/cm2.
As a result of the analysis of the collected data and the study of the operating modes

of the hydrotreating furnace for the development of its model, an experimental–statistical
method was chosen. The optimal operating mode of the furnace can be selected based on
a mathematical model describing the influence of input variables on output parameters,
i.e., allowing to obtain information about the thermal operation of the furnace. The
mathematical description, which is the basis of the mathematical model, must determine
the parameters of the thermal operation of the furnace [30,31].

The main disadvantage of the methods for calculating furnaces used so far is that in
these methods only integral indicators of the heat exchange process are determined, they
do not determine the possibility of heating the furnace tubes. Recently, modeling methods
based on theoretical studies were proposed, which make it possible to determine local heat
transfer parameters, for example, the zonal method. In mathematical terms, the meaning of
the zonal calculation method: replacement of integral–differential equations describing the
process of heat transfer, with a limited system of algebraic equations approximating them.
By solving the obtained algebraic equations, the energy characteristics of heat transfer
are determined, i.e., temperature and flows of local zones. For this purpose, the research



Appl. Sci. 2021, 11, 8317 11 of 20

furnaces are divided into a limited number of zones with the same radiation properties.
This approach in calculating the furnace can provide sufficient accuracy; to increase the
accuracy, it is necessary to increase the number of zones. However, this method is rather
complicated and the collection of the necessary information for its application in practice is
also difficult.

To simulate the operation of industrial furnaces in an interactive mode and to quickly
obtain the necessary information and results, simple models are required. For this reason,
the analytical method of N.I. Belokon based on the joint solution of the heat transfer
equation and heat balance [32] can be used.

Regression models were identified to calculate the output parameters of the F-101
hydrotreating furnace based on statistical and experimental data. In this case, the distri-
bution law of random measurements ε j is taken close to the normal law, i.e., M[ε j] = 0,
D[ε j] = G2 = const, j = 1, m.

Thus, the structure of the model that estimates the yield of the hydrotreating furnace:
y1—the volume of the mixture of feed and gas and y2—the temperature of the outlet flow
from the furnace, are identified in the form of the following nonlinear regression equations:

yj = a0j + a1jx1 + a2jx2 + a3jx3 + a4jx2
1 + a5jx2

2 + a6jx2
3 + a7jx1x2 + a8jx1x3

+a9jx2x3 + ε j, j = 1, 2
(8)

In the model (8), the following designations are adopted: aij, i = 0, 3, j = 1, 2 are
parameters of the model that must be identified, for their assessment, one can use the
well-known least squares method; x1, x2, x3—operating parameters of the F-101 furnace,
respectively: the volume of raw materials (x1); furnace inlet temperature (x2) and pressure
in the F-101 furnace (x3).

Results of identification of regression coefficients of the model (8) using processed
statistical data and using the REGRESS program:

y1 = 3.7500 + 0.2922x1 + 0.0208x2 − 0.0893x3 + 0.00252
1 + 0.0001x2

2 + 0.0021x2
3

+0.0011x1x2 + 0.0023x1x3 + 0.0045x2x3;

y2 = 17.0000− 0.2208x1 + 0.7555x2 + 0.4047x3 − 0.00282
1 + 0.0016x2

2 − 0.0096x2
3

+0.0037x1x2 + 0.0157x1x3 + 0.0045x2x3.

In order to determine the optimal temperature of the hydrotreating process on the
basis of expert information and a logical rule of conditional conclusions and a rule base,
a linguistic model was built using the method proposed in Section 2.3. The resulting
linguistic model implements the logical dependence:

IF thermal stability of raw materials is low AND pressure is below average,
THEN process temperature is low;
IF thermal stability of raw materials is average AND pressure is average,
THEN process temperature is average;
IF thermal stability of raw materials is high AND pressure is above average,
THEN process temperature is high.
Formation of a rule base for fuzzy inference systems, which is a set of rules for

fuzzy products, in which conditions and conclusions are formulated in terms of fuzzy
statements. In our problem, the input parameters (variables), the values of which are set
outside the model of the fuzzy inference system, are: x̃1—“quality of raw materials” and
x̃3—“pressure”, and the output variable, the value of which is formed inside the model, is
ỹ2—the temperature of the hydrotreating process.

For an abbreviated notation of the rules, we use the designations presented in Table 1.
Universal sets (universes) of the given fuzzy parameters necessary for constructing the
membership function are given in Table 2.
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Table 1. Values of fuzzy parameters for forming the rule base.

Fuzzy Parameter Values Designation

low stability of raw materials, process temperature LW
below average stability of raw materials, process temperature BA

average stability of raw materials, process temperature AG
above average stability of raw materials, process temperature AA

high stability of raw materials, process temperature HG
low pressure LP

pressure below average PBA
medium pressure MP

pressure above average PAA
high pressure HP

Table 2. Universums for fuzzy parameters x̃1, x̃3 and ỹ2.

Fuzzy
Parameter Level of Values of Fuzzy Parameters

LW,
LP
low

BA,
PBA

lower average

AG,
MP

average

AA,
PAA

higher average

HG,
HP

high

x̃1quality,
sustainability of raw materials 180–19 175–185 165–175 160–170 155–165

x̃3pressure of the hydrotreating furnace 37–39 38–40 39–41 40–42 41–45
ỹ2hydrotreating process temperature 270–330 320–340 330–370 360–380 370–430

Tables 1 and 2 show the 5th level of values of fuzzy parameters (LW, LP—Low; BA,
PBA—below average; AG, MP—average; AA, PAA—above average; HG, HP—High), i.e.,
values of linguistic variables.

Fuzzification procedures and other procedures for the fuzzy inference algorithm are
implemented in MatLab using the Fuzzy Logic Toolbox package. Figure 3 shows the editor
window with the set parameters of the fuzzy inference system.
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Figure 4a–c shows the Gausto-type membership functions for two fuzzy input param-
eters and an output parameter, constructed using this package.
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The developed rules of fuzzy productions for the fuzzy inference system, i.e., linguistic
models that allow us to determine the optimal temperature of the hydrotreating process
are presented in the form of the following rules of fuzzy products:

Rule 1: IF «x̃1 is LG» and «x̃3 is LP» THEN «ỹ2 is LW» F1;
Rule 2: IF «x̃1 is LG» and «x̃3 is PBA» THEN «ỹ2 is LW» F2;
Rule 3: IF «x̃1 is LG» and «x̃3 is MP» THEN «ỹ2 is LW» F3;
Rule 4: IF «x̃1 is LG» and «x̃3 is PAA» THEN «ỹ2 is BA» F4;
Rule 5: IF «x̃1 is LG» and «x̃3 is HP» THEN «ỹ2 is BA» F5;
Rule 6: IF «x̃1 is BA» and «x̃3 is LP» THEN «ỹ2 is BA» F6;
Rule 7: IF «x̃1 is BA» and «x̃3 is PBA» THEN «ỹ2 is AG» F7;
Rule 8: IF «x̃1 is BA» and «x̃3 is MP» THEN «ỹ2 is AG» F8;
Rule 9: IF «x̃1 is BA» and «x̃3 is PAA» THEN «ỹ2 is AG» F9;
Rule 10: IF «x̃1 is BA» and «x̃3 is HP» THEN «ỹ2 is BA» F10;
Rule 11: IF «x̃1 is AG» and «x̃3 is LP» THEN «ỹ2 is BA» F11;
Rule 12: IF «x̃1 is AG» and «x̃3 is PBA» THEN «ỹ2 is AG» F12;
Rule 13: IF «x̃1 is AG» and «x̃3 is MP» THEN «ỹ2 is AG» F13;
Rule 14: IF «x̃1 is AG» and «x̃3 is PAA» THEN «ỹ2 is AG» F14;
Rule 15: IF «x̃1 is AG» and «x̃3 is HP» THEN «ỹ2 is PAA» F15;
Rule 16: IF «x̃1 is AA» and «x̃3 is LP» THEN «ỹ2 is PAA» F16;
Rule 17: IF «x̃1 is AA» and «x̃3 is PBA» THEN «ỹ2 is PAA» F17;
Rule 18: IF «x̃1 is AA» and «x̃3 is MP» THEN «ỹ2 is PAA» F18;
Rule 19: IF «x̃1 is AA» and «x̃3 is PAA» THEN «ỹ2 is AA» F19;
Rule 20: IF «x̃1 is AA» and «x̃3 is HP» THEN «ỹ2 is AA» F20;
Rule 21: IF «x̃1 is HG» and «x̃3 is LP» THEN «ỹ2 is AA» F21;
Rule 22: IF «x̃1 is HG» and «x̃3 is PBA» THEN «ỹ2 is AA» F22;
Rule 23: IF «x̃1 is HG» and «x̃3 is MP» THEN «ỹ2 is HG» F23;
Rule 24: IF «x̃1 is HG» and «x̃3 is PAA» THEN «ỹ2 is HG» F24;
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Rule 25: IF «x̃1 is HG» and «x̃3 is HP» THEN «ỹ2 is HG» F25.
Here F1, . . . , F25—are weighting factors reflecting the degree of confidence in the

truth of the subconclusions. These coefficients take values in the range from zero to one.
The given rule base, a fuzzy knowledge base, is implemented using Fuzzy Logic Tool-

box and a fragment of the base is shown in Figure 5. The obtained results of visualization
of fuzzy inference in RuleViewer are shown in Figure 6.
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The Input field contains the values of the input variables for which inference is
performed. The “inputs–output” surface corresponding to the synthesized fuzzy system is
shown in Figure 7.
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3.2. Discussion of Results

The methods proposed in the work for the development of mathematical models of
technological objects functioning in conditions of indistinctness of the initial information
allow us to build fuzzy models with clear input and fuzzy output parameters of the object
(FM method) and linguistic models with fuzzy values of the input and output parameters
of the object (LM method). The method for constructing fuzzy models is based on the use
of methods of sequential inclusion of regressors (for structural identification of the model)
and a modified least squares method using a set of level α (for identification of model
parameters). The method of constructing a linguistic model is based on the use of logical
rules for conditional inference and linguistic variables that describe the input and output
parameters of the object.

To determine the volume of hydrogenate, i.e., of the target product from the outlet of
the hydrotreating reactor R-1 using the methods of sequential inclusion of regressors and
least squares on the basis of the experimental statistical data package and the REGRESS
software package, a statistical model was built that makes it possible to determine the
volume of hydrogenate from the outlet of the reactor depending on the input, operating
parameters xi, i = 1, 5.

Since the initial information for assessing the quality of the produced hydrogenated
product is characterized by indistinctness, a systematic approach using the methods of
expert assessments and theories of fuzzy sets was applied to construct models for assessing
the quality of the hydrogenated product. An expert assessment of the influence of the input
and operating parameters on the quality parameters of the hydrogenated product was
carried out. Then, processing the collected data and expert information using the fuzzy
modeling method proposed in Section 3.1, the structure of fuzzy models was identified to
describe the product quality of the hydrotreating reactor R-1 in the form of fuzzy multiple
regression Equation (7).

The main disadvantage of the methods used in practice for calculating furnaces is
that they determine only the integral indicators of the heat transfer process, and allow
the possibility of heating the local tubes of the furnace. To eliminate this drawback, it is
proposed to apply the zonal method, which is based on replacing integral–differential
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equations that describe the process of heat transfer by a system of algebraic equations. The
zonal method of calculating the furnace can provide sufficient accuracy; to increase the
accuracy, it is necessary to increase the number of zones. However, this method is rather
complicated and the collection of the necessary information for its application in practice is
also difficult. Therefore, to simulate the operation of the F-101 hydrotreating furnace, it is
proposed to use an analytical method based on the joint solution of the heat transfer and
heat balance equation to quickly obtain the necessary information and results. Statistical
models were built that make it possible to determine the output of the hydrotreating
furnace: the volume of the mixture of raw materials and gas and the temperature of the
outlet flow from the furnace, in the form of nonlinear regression Equation (8). To determine
the optimal temperature of the hydrotreating process, based on expert information and
a logical rule of conditional conclusions and a rule base, a linguistic model was built
that estimates the optimal temperature depending on the quality of raw materials and
furnace pressure.

Based on the simulation of the operation of the furnace and the hydrotreating reactor
of the reactor and the analysis of their results, it is possible to select the optimal operating
mode that provides the effective values of the optimization criteria, for example, maxi-
mizing the hydrogenated product yield from the R-1 reactor while ensuring the required
quality indicators. Comparison of the results of modeling and selection of the effective
operating mode of the hydrotreating unit based on the known and constructed models
and real experimental data from the hydrotreating unit of the Atyrau refinery is shown
in Table 3.

Table 3. Results of comparison of data obtained with known models, developed models and real, experimental data from
the hydrotreating unit of the LG-35-11/300-95 unit of the Atyrau refinery.

Output and Input
Parameters Known Models [33]

Taking Into
Account the Fuzzy

Information of the Model

Real,
Experimental Data

hydrogenate output from
reactor R-1, m3/h 76 77.1 77

unsaturated hydrocarbons in
hydrogenate, ỹ2, % - ≤̃0.97 ≤̃(0.98) P

sulfur in the hydrogenated
product, ỹ3, % - ≤̃0.00005 ≤̃(0.00005) P

water-soluble acids and
alkalis in the hydrogenated

product, ỹ4, %
- =̃0 (=̃0 ) P

the volume of raw materials at
the entrance R-1, x1, m3/h; 83 80 80

pressure in R-1, x2, kg/cm; 30 30 30
temperature in R-1, x3, ◦C 345 340 340

Volumetric velocity, x4, h−1 3 3 3
HCG circulation, x5, nm3. 420 400 400

Note: means that the corresponding parameters are not determined by this method, (·) P—means that these data are determined with the
participation of people in the laboratory of the plant.

The analysis of the data obtained and given in Table 3 allows us to conclude that the
simulation results using the developed models, taking into account fuzzy information, are
superior to the known deterministic approaches, since the simulation results coincide more
accurately with the real (experimental–production) data. In addition, using the proposed
approach, product quality indicators are determined, which are described indistinctly (ỹ2,
ỹ3, ỹ4), which cannot be determined by traditional modeling methods.

The graphical results on the visualization of fuzzy inference and the “inputs–output”
surface, built using the Fuzzy Logic Toolbox application, testify to the adequacy and
effectiveness of the proposed method for solving the problem since the graphs obtained
correspond to the results of the expert assessment.
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4. Conclusions

In this work, methods were developed for constructing models of technological
objects in conditions of a deficit and indistinctness of initial information, which are the
main components of the hydrotreating unit of a catalytic reforming unit, using the available
information of an experimental–statistical and fuzzy nature. Methods for constructing
fuzzy models for objects with fuzzy output parameters and constructing linguistic models
with fuzzy input and output parameters of the object are proposed. Using the proposed
methods, fuzzy models were built for assessing the quality of products (hydrogenate) from
the outlet of the hydrotreating reactor and linguistic models for determining the optimal
hydrotreating process depending on the thermal stability of the feedstock and the pressure
in the hydrotreating furnace.

Mathematical models of the R-1 hydrotreating reactor were developed on the basis of
experimental–statistical and fuzzy information.

Mathematical models of the F-101 hydrotreating furnace were built using the available
information of an experimental and statistical nature.

The rules of fuzzy productions for the fuzzy inference system, i.e., linguistic models
that allow for the determining of the optimal temperature of the hydrotreating process
depending on the quality of the feedstock and the pressure in the hydrotreating furnace.

To solve the problems of deficiency and fuzziness of initial information in the con-
struction of mathematical models, it is proposed to use the available information of a
different nature, including fuzzy information. Mathematical models of the hydrotreating
unit are developed on the basis of experimental statistical data and fuzzy information from
experts. Mathematical models for determining the volume of products from the output of
the aggregates are identified in the form of statistical models of the regression type, and
the models evaluating the indistinctly described qualitative indicators of the produced
product: the content of unsaturated hydrocarbons—ỹ2; sulphur—ỹ3 and water-soluble
acids and alkalis—ỹ4, in the form of fuzzy equations. The structural identification of the
developed models was carried out on the basis of the method of sequential inclusion of
regressors, and parametric identification was carried out using a modified least squares
method using the REGRESS software package.

A graph of the dependence of the hydrogenated product yield on the temperature in
the hydrotreating reactor R-1 with fixed values of the remaining operating parameters was
plotted. In conditions of indistinctness of both input and output parameters, i.e., when
the input and output of the hydrotreating reactor are described by linguistic variables,
it is proposed to build linguistic models on the basis of logical rules of the conventional
form. This approach was implemented when constructing a linguistic model describing
the dependence of the optimal temperature of the hydrotreating process on the thermal
stability of the feedstock and on the pressure in the hydrotreating furnace.
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