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Abstract: The purpose of this study is to assess the effect of doping ZrO2 ceramics with MgO on
radiation swelling and polymorphic transformations, as a result of irradiation with heavy ions.
Interest in these types of materials is due to the great prospects for their use as structural materials for
new-generation reactors. The study established the dependences of the phase composition formation
and changes in the structural parameters following a change in the concentration of MgO. It has
been established that the main mechanism for changing the structural properties of ceramics is the
displacement of the cubic c-ZrO2 phase by the Zr0.9Mg0.1O2 substitution phase, which leads to an
increase in the stability of ceramic properties to irradiation. It has been determined that an increase
in MgO concentration leads to the formation of an impurity phase Zr0.9Mg0.1O2 due to the type of
substitution, resulting in changes to the structural parameters of ceramics. During studies of changes
in the strength properties of irradiated ceramics, it was found that the formation of a phase in the
Zr0.9Mg0.1O2 structure leads to an increase in the resistance to cracking and embrittlement of the
surface layers of ceramics.

Keywords: ZrO2 ceramic; swift heavy ion; polymorphic transformations; radiation defects; radia-
tion resistance

1. Introduction

In light of the latest world trends in energy development, increasing attention is paid
to nuclear and atomic energy in view of their potential use not only as a basis for energy
production but also—in the case of nuclear reactors—hydrogen production [1–3]. In this
regard, research into new types of structural materials for the high-temperature nuclear
reactors of a new generation deserve special attention. The most important requirements
for new types of structural materials for Gen IV reactors include high melting points,
thermal conductivity, resistance to radiation damage, etc. [4–6]. According to the shortlist
for the EUROfusion project, alternatives to traditional steels and alloys that meet all of
the above requirements are ceramic materials based on oxides (ZrO2, BeO, MgO) [7–10],
nitrides (AlN, Si3N4) [11–13], and carbides (SiC, TaC) [14,15]. Among the various types of
ceramics, oxide ceramics ZrO2, BeO have recently been recognized. With a small value of
the thermal neutron capture cross section, good corrosion and degradation resistance, as
well as excellent strength and hardness indicators, there are broad prospects for their use
as the structural materials of a new generation [16–20].
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Interest in ZrO2 ceramics is also due to the fact that, when used as materials for fuel
assemblies (FAs), ceramics create an additional protective barrier for oxygen and hydrogen
penetration from the coolant, thereby reducing the rate of FA degradation. However, a num-
ber of studies show that in ZrO2 ceramics, under the action of irradiation with heavy ions
of Kr, Xe at high irradiation fluences, polymorphic transformations of the t-ZrO2 → c-ZrO2
type occur, caused by the processes of radiation damage [21–23]. Such transformations can
have a negative impact on resistance to degradation, hydrogen absorption, and swelling of
ceramics as a result of long-term operation. The mechanisms of polymorphic transforma-
tions are primarily associated with local thermal effects arising from the interaction of ions
with the irradiated material, and the subsequent transformation of the ion’s kinetic energy
into thermal energy. As a result of such interactions, nonequilibrium regions appear in the
structure, leading to phase transformations. Moreover, as shown in [21,22], the degree of
polymorphic transformation depends largely on the energy and types of ion with which
the interaction occurs.

One way to increase resistance to the polymorphic transformations of oxide and
nitride ceramics is to introduce various stabilizers into their structure, which, due to
their properties, can interfere with these processes [24,25]. The most common stabilizing
additives are Y2O3, MgO and Al2O3, which, when added in small amounts, lead to
significant changes in the properties of ceramics [26–30].

Based on the above, the aim of this work is to study the effect of MgO addition
at concentrations of 0.05, 0.10 and 0.15 mol.% during sintering of ZrO2 ceramics on the
increase in resistance to polymorphic transformations t-ZrO2 → c-ZrO2 under the action
of irradiation.

2. Materials and Methods

The samples for the study were ZrO2 ceramics doped with MgO. Preparation of the
samples consisted of weighing the initial powders of ZrO2 and MgO in specified molar
ratios and grinding them in a planetary mill for 1 h at a grinding speed of 400 rpm. After
grinding, the samples were sintered at a temperature of 1100 ◦C for 5 h and then pressed
into tablets with a diameter of 5 mm and a thickness of 200 µm.

The concentrations of the MgO dopant were 0.05, 0.10 and 0.15 mol.%; these values
were chosen with a view to studying the effect of additives on changes in structural and
strength properties. Micron-sized ZrO2 and MgO powders manufactured by Sigma Aldrich
(Sigma Ltd., Saint Louis, MO, USA) were used as starting reagents; the chemical purity
was 99.95%.

Assessment of the resistance of samples to radiation damage was carried out by
irradiating them with heavy Xe22+ ions with an energy of 230 MeV and fluences of
1012–1015 ion/cm2. Irradiation was carried out at room temperature, with the ion flux
at 109 ion/cm2*s, and the beam current was 100 nA. The ion type and energy values were
chosen with a view to simulating radiation damage, comparable to the damage arising
from irradiation with uranium fission fragments in reactor tests. The values for irradi-
ation fluences were chosen with a view to simulating defects, both in the case of single
defects and in the overlap of defect regions formed by the passage of ions in the ceramic
material. According to the calculated data, the energy losses of incident Xe22+ ions are
dE/dxelectron = 24,700 keV/µm, dE/dxnuclear = 86.5 keV/µm, and the ion path length is
more than 14 µm.

The study of the kinetics of polymorphic transformations as a result of irradiation
and subsequent changes in structural parameters was carried out using data obtained
from X-ray diffraction. The data acquisition was carried out on a D8 Advance ECO X-ray
diffractometer (Bruker, Mannheim, Germany). Diffraction patterns were recorded using Cu-
kα X-rays with a wavelength of 1.54 Å, with the Bragg–Brentano geometry in the angular
range of 2θ = 25–75◦, and a step of 0.03◦. The crystal lattice parameters were determined
and refined using the DiffracEVA v. 4.2 program code (Bruker, Mannheim, Germany),
which is based on refinement of the parameters of the full-profile analysis methods.
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To determine the phase composition, the PDF-2(2016) database was used. The phase

ratio was determined using the formula Vadmixture =
RIphase

Iadmixture + RIphase
, where Iphase and

Iadmixture are the intensities of the reflections of the dominant and impurity phases, and
R = 1.45 is the structural parameter [31].

Structural deformation was evaluated by comparing changes in crystal lattice parame-
ters depending on the types of external effects.

The swelling of the crystal structure was established by determining the value of
∆V/V—the change in the volume of the crystal lattice depending on the types of exter-
nal effects.

Determination of strength properties was carried out by evaluating changes in the
hardness of the ceramics before and after irradiation, as well as by calculating the degree of
softening and degradation of the near-surface layer, depending on the irradiation fluence.
The hardness was determined by an indentation method using a Vickers diamond pyramid
at an indenter load of 500 N. The destruction degree was determined by calculating the
ratio of hardness readings in the initial and irradiated states.

3. Results and Discussion

Figure 1 shows the results of X-ray analysis of the samples under study, depending
on the concentration of the dopant after thermal sintering. An initial sample without the
addition of the dopant MgO, milled under the same conditions and subjected to thermal
annealing, was chosen as a reference sample. According to the full-profile analysis data,
in the initial state, the samples are a mixture of two phases, tetragonal (t-ZrO2) and cubic
(c-ZrO2), the content of which is t-ZrO2/c-ZrO2~85/15. This phase composition is due
to the conditions for obtaining ceramics and is a result of mechanochemical treatment
and subsequent thermal sintering. The addition of the MgO dopant at a concentration
of 0.05 mol.% does not lead to the formation of new reflections, which indicates the
absence of phase transformation processes and the formation of substitution or interstitial
phases. However, in the case of an increase in concentration to 0.10 mol.% and higher, the
general broadening of the main reflections can be described by three sets of functions, with
maxima related to the t-ZrO2 and c-ZrO2 phases, and maxima characteristic of the cubic
substitutional phase of Zr0.9Mg0.1O2. Evaluation of the contributions of these phases to
the composition of ceramics showed that the content of this phase is 3–5%, while partially
replacing the c-ZrO2 phase. The formation of the Zr0.9Mg0.1O2 phase with an increase
in dopant concentration is due to the substitution of magnesium atoms with zirconium
atoms, followed by the formation of a cubic lattice. Thus, from the obtained X-ray phase
analysis data, it can be concluded that when the dopant MgO is added with a concentration
of more than 0.10 mol.%, under the selected synthesis conditions, a stable substitution
phase is formed with a subsequent increase in its content. However, when analyzing the
diffraction pattern of a sample with an MgO dopant content of 0.15 mol.%, it was found
that an increase in the content of the Zr0.9Mg0.1O2 phase leads to a strong deformation of
the peaks, which is characteristic of distortions of interplanar spacings and distortion of
the crystal lattice.

Figure 2 shows the results of changes in the crystal lattice parameters depending on
the concentration of the MgO dopant. According to the data obtained, an increase in dopant
concentration from 0.05 to 0.10 mol.% leads to a decrease in crystal lattice parameters. This
behavior of changes in parameters can be caused by partial substitution of a Zr atom
with Mg atoms, which leads to a decrease in the cell size, as well as the formation of an
impurity substitution phase. At the same time, the change in the lattice parameter c is more
pronounced than the lattice parameter a. However, an increase in the MgO concentration
to 0.15 mol.% leads to an increase in the crystal lattice parameters; this may be associated
with an increase in the contribution of the Zr0.9Mg0.1O2 phase, which leads to deformation
of the structure.
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Analysis of the dependences ∆a/a and ∆c/c presented in Figure 2b reflect the de-
formation of compression or expansion of the lattice, depending on external factors. As
seen in the data obtained, a change in the phase composition leads to an ordering of the
crystal lattice and a decrease in tensile strain. However, an increase in the contribution
of the Zr0.9Mg0.1O2 phase at a dopant concentration of 0.15 mol.% leads to the appear-
ance of additional distortions of the structure, which negatively affects the changes in the
crystal lattice.

One of the features of ZrO2 ceramics in the tetragonal phase is its instability as a
result of external influences associated with the occurrence of thermal heating or defor-
mation of the structure. This instability is expressed in a polymorphic transformation of
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the t-ZrO2 → c-ZrO2 type, accompanied by changes in the strength and structural prop-
erties of ceramics. As shown in [21,22], one of the mechanisms of polymorphic transfor-
mations is the thermal effect, arising from the transition of incident ions’ kinetic energy
into thermal energy, as a result of energy loss along their trajectory in the material. At the
same time, there is an increase in the irradiation fluence, followed by an increase in the
effect of overlapping defect regions, which arise as a result of the overlapping trajectories
of ions in the material; this leads to an increase in the thermal effect, which causes the
transformation of the t-ZrO2 → c-ZrO2 structure. The result of this enhancement was
the complete transformation t-ZrO2 → c-ZrO2, with a subsequent deterioration in the
structural and strength properties of ceramics. Moreover, as shown in [21,22], there is a
direct dependence of the degree of polymorphic transformations not only on the irradiation
fluence but also on the types of ion and their energy.

One method of controlling this effect in oxide ceramics is the use of dopants, the main
role of which is to stabilize the structure and inhibit the mechanisms of polymorphic trans-
formations. The basis of the braking mechanisms is the assumption that the introduction
of a dopant with the subsequent substitution of zirconium atoms in the lattice nodes, as
well as the formation of substitution phases, can lead to the creation of additional barriers
and drains of defects.

Figure 3 below shows the results of changes in the phase composition of the studied
ceramics depending on the irradiation fluence, as well as the concentration of the dopant
in the structure. In the case of initial, undoped ceramics, the dynamics of changes in the
phase composition as a result of polymorphic transformations t-ZrO2 → c-ZrO2 are in
good agreement with the results of studies performed on commercial ceramics [21,22]. In
this case, the main process of polymorphic transformations, followed by the dominance of
the c-ZrO2 phase, occurs at an irradiation fluence above 1013 ion/cm2; this is typical for
the appearance of overlapping defect regions and, consequently, an increase in distorting
stresses, as well as the thermal effect during irradiation.

In the case of doped ceramics, the effect of polymorphic transformation as a result of
irradiation is less pronounced. Thus, at a dopant concentration of 0.05 mol.%, an increase
in the irradiation fluence above 1013 ion/cm2 leads to an increase in the contribution of the
c-ZrO2 phase, but the t-ZrO2 phase remains dominant. The formation of the Zr0.9Mg0.1O2
phase in the ceramic structure, as seen in Figure 3c, leads to a decrease in the mechanism of
polymorphic transformations and an insignificant decrease in the t-ZrO2 phase. It should be
noted that at an irradiation fluence of 1014–1015 ion/cm2, there is an insignificant increase
in the contribution of the Zr0.9Mg0.1O2 phase, which inhibits polymorphic transformation
of the t-ZrO2 → c-ZrO2 type.

At the same time, the presence of the Zr0.9Mg0.1O2 phase in the initial composition
with a content of more than 5% leads to the destabilization of the ceramic structure and the
acceleration of the process of polymorphic transformations at high irradiation fluences.

The change in structural parameters as a result of phase polymorphic transformations
is primarily associated with the deformational nature of the distortions, as well as swelling
of the crystal structure. The results of assessing the degree of swelling, as well as the effect
of doping on swelling resistance, are shown in Figure 4. As seen in the data presented, the
greatest swelling of the crystal structure is observed in the case of undoped ceramics and
at the maximum irradiation fluence is more than 7.5%. This behavior of the crystal lattice
is primarily due to structural distortions resulting from polymorphic transformations, as
well as the accumulation of radiation damage as a result of irradiation. Doping of ceramics
leads to a more than twofold decrease in the degree of swelling at a dopant concentration
of 0.05 mol.%, decreasing by a further 2.7–3.7% when the impurity phase Zr0.9Mg0.1O2 is
formed in the structure, which reduces the degree of polymorphic transformations.
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One of the important indicators of resistance to external influences—in particular,
irradiation with heavy ions and subsequent accumulation of radiation damage—is the
preservation of the strength properties of oxide ceramics. This is because the mechanical
properties are very sensitive to radiation defects [32,33]. In this case, the presence in
the structure of various point defects, dislocations and interstitial defects can serve as
additional obstacles to the accumulation and agglomeration of radiation-induced defects in
the structure, leading to softening of the surface layer of ceramics. Unlike nitride ceramics
or spinel-type ceramics, ZrO2 ceramics are highly resistant to amorphization as a result of
irradiation, which leads to fewer changes in strength properties. In this case, the formation
of an impurity substitutional phase in the structure, which leads to a decrease in the degree
of polymorphic transformations, as well as to a decrease in the degree of swelling of the
crystal lattice, can also have a positive effect on the resistance to softening of the damaged
layers of ceramics.

Figure 5 shows the results of changing the strength characteristics—in particular, the
hardness and degradation degree—depending on irradiation fluence. According to the
data obtained, doping leads to an increase in hardness of the initial samples by 1.1–2.4%,
depending on the MgO concentration. This increase is due to a change in the structural
parameters and an increase in the density of ceramics.
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Figure 5. (a) Dependence of hardness change on irradiation fluence; (b) dependence of change in degree of hardness
degradation on irradiation fluence.

For irradiated samples without doping, the change in hardness values can be divided
into two stages, characterized by a different degree of degradation and a decrease in
hardness. The first stage is typical for irradiation fluences of 1012–1014 ion/cm2, for which
the decrease in hardness values can be described by a linear dependence. As shown in
the data presented, in the case of undoped ceramics, for which the degree of polymorphic
transformations is maximum at an irradiation fluence of 1013 ion/cm2, a sharp decrease
in strength is observed. Furthermore, there is an increase in the damaged layer softening
degree above 15%, with an increase in irradiation fluence observed. At the same time,
an increase in the irradiation fluence up to 1015 ion/cm2 leads to a sharp deterioration in
hardness indicators, and the degradation degree is more than 23%.

The addition of a dopant and the subsequent formation of the Zr0.9Mg0.1O2 phase,
which leads to a decrease in the degree of polymorphic transformations, results in a lower
softening degree and an increase in resistance to hardness degradation. At the same
time, for irradiation fluences of 1012–1013 ion/cm2, the decrease in hardness is no more
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than 3–4%. An increase in irradiation fluence to 1014–1015 ion/cm2 leads to an increase
in disordering degree to 12–15%, while for the original undoped ceramics, the maximum
disordering degree for this fluence was more than 20%.

Figure 6 shows the results of morphological studies of ceramics after irradiation
with the maximum irradiation fluence, to determine the degradation degree of the near-
surface layer.
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Figure 6. Results of morphological studies of ceramics irradiated with a fluence of 1015 ion/cm2: (a) pristine sample;
(b) 0.05 mol.%; (c) 0.10 mol.%; (d) 0.15 mol.%

As seen in the data presented, an increase in the dopant concentration leads to an
enlargement of grains and an increase in the homogeneity degree of their sizes. At the
same time, in the case of the initial samples irradiated with a fluence of 1015 ion/cm2,
delamination and the formation of microcracks and pores are observed in the near-surface
layer; this indicates a high concentration of overstresses and deformations, leading to
cracking and a decrease in the strength and crack resistance of ceramics. In turn, doping
leads to an increase in stability, as well as a decrease in microcracks. It should be noted
that at a dopant concentration of 0.10 mol.%, the formation of microcracks and pores is
not observed in the near-surface layer, which indicates a high resistance of ceramics to
irradiation and degradation.
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In general, it can be noted that, according to the data obtained, the doping of ZrO2
ceramics with MgO at a concentration of 0.05–0.10 mol.%. leads to an increase in radiation
resistance due to the formation of a substitution phase. The presence of this phase leads not
only to an increase in radiation resistance, but also to the formation of defect regions in the
structure. As is known, in the case of irradiation with heavy ions or neutron radiation, the
main factor affecting the decrease in strength properties are point defects, the concentration
of which increases with the radiation dose. At the same time, one of the factors for
restraining the decrease in strength properties is the use of various dopants [34,35], which
make it possible to reduce the rate of migration of point defects along the structure by
changing the dislocation density or additional grain boundaries.

4. Conclusions

As a result of this study, it was found that the formation of Zr0.9Mg0.1O2 impurity
phase in the structure of ZrO2 ceramics leads not only to a decrease in the degree of
polymorphic transformations but also to an increase in resistance to radiation damage and
a decrease in strength properties.

During determination of the most effective dopant concentration, it was found that the
addition of MgO with a content of 0.10 mol.% is the most optimal concentration, leading
to the formation of Zr0.9Mg0.1O2 phase, the content of which does not exceed 3–4%. At
the same time, an increase in Zr0.9Mg0.1O2 phase in the structure of the initial ceramics
leads to the appearance of additional distortions and tensile stresses in the crystal lattice,
which have a negative effect on the change in the structure as a result of accumulation of
radiation defects.

The results obtained indicate that the addition of MgO in concentrations of 0.05–0.10
mol.% significantly increases the resistance of ZrO2 ceramics to radiation damage and
subsequent polymorphic transformations, thereby increasing the stability and radiation
resistance of ceramics.
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