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Abstract: The paper considers the main ways of describing the process that characterizes the arrival
of packets to a multiservice node of a telecommunications network. The features of the process
under consideration are best represented by the cumulative distribution function A(t). It determines
the distribution of the interval size between the moments of arrival of neighboring packets to the
multiservice node. These intervals are random values. If it is not possible to perform measurements
that allow the choosing of the A(t) function, then the distribution law of random variables is selected
based on reasonable assumptions. For telephone switching nodes, the Poisson flow hypothesis was
used, which is often similar to the symmetric distribution of the number of calls at time interval t. The
results of traffic measurements for multiservice switching nodes showed that the studied distribution
is inherently asymmetric. This paper mainly considers the possibility of choosing the A(t) function
based on the measurement results presented in a form of the histogram a(t), which contains a series
of values. This histogram allows us to obtain the desired distribution as a stepwise function by
integration of the a(t). Practical interest is associated with the possibility of reducing the number
of readings used to assess the A(t) function. The methods used by some authors are based on the
application of arbitrarily chosen functions A(t) with so-called heavy tails. The proposed approach is
based on real distributions defined at a finite time interval. As a result of this research, a methodology
has been developed to accurately describe the process of packet arrival at the input of the multiservice
node. The proposed methodology is based on analytical methods. It guarantees error minimization
when investigating the probabilistic characteristics of a switching node in a multiservice network.

Keywords: function; histogram; packet; scale; symmetry; quality of service

1. Introduction

In communication networks, the first problems of choosing a cumulative distribution
function (CDF) denoted here as A(t) arose in the 19th century when building telegraph
networks. However, the mathematical theory that makes it possible to perform the required
calculations arose during the creation of telephone networks. It was called teletraffic
engineering. Agner Krarup Erlang is considered its founder [1,2]. He was a Danish
mathematician, statistician, and engineer.

In the teletraffic theory, a call attempt made by a subscriber is considered to be a
request, as applied to the telephone network. A number of operations should be carried
out with this request in order to provide the subscriber with the opportunity to receive
the requested service. A modern multiservice network usually considers a packet that
should be processed for the correct exchange of information between users as a request.
The name of the related mathematical theory has also changed. Now, it is more often called
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the queuing theory [3,4]. This name is used because the request can stay in the buffer
memory (in other words, in the queue) waiting for servicing.

Measurements of traffic parameters in telephone networks showed that the CDF A(t)
in most cases obeys the exponential law [5] with the parameter λ:

A(t) = 1− e−λt. (1)

The value of the parameter λ is inversely proportional to the average value of the
interval between the moments of arrival of requests A(1). The queuing theory calls the
value λ the intensity of the arriving request flow. An exponential distribution of the
form (1) indicates that the request flow is of a Poisson process [3,4]. For a Poisson flow, the
probability of arrival of exactly k requests over a time interval with duration of t, denoted
as pk(t), is determined by the following formula:

pk =
(λt)k

k!
e−λt. (2)

Note that as the product of λt increases, the function pk(t) becomes close to symmetric.
With the formation of multiservice networks, in which all types of information (speech,

data, and video) are transmitted as a sequence of packets, the Poisson flow hypothesis
became unacceptable. CDF A(t) that differed from (1) began to be used. Note that the
coefficient of variation is equal to the ratio of the standard deviation to the mean of a
random variable. Typically, these distributions have a coefficient of variation, CA, greater
than one. For a Poisson flow, this coefficient is equal to one. Moreover, self-similar processes
began to be used to describe the function A(t) [6].

Modern telecommunication equipment allows the collection of statistical data, based
on which a histogram a(t) is being built. It allows highly reliable assessments to be obtained
that are able to reveal the nature of the arriving request flow. For this purpose, it is necessary
to develop a method for analyzing the function a(t). The solution to such a problem is the
main topic of this paper.

2. Mathematical Model of a Multiservice Node

A multiservice node can be viewed as a black box [7], as shown in Figure 1. This black
box is used as a model for a queuing system. Four more processes are defined for such a
system in addition to the function A(t).
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Figure 1. Model of the multiservice node.

The process B(t) is the CDF of the holding time of requests (packets) in a queuing
system that is used as a model of a multiservice node. Using the process C(t), various
control algorithms for a queuing system can be specified. The process D(t) is the CDF of
the interval between the moments at which successfully processed requests depart from
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the queuing system. Some requests cannot be processed for a number of reasons, and they
are lost. The process E(t) allows this phenomenon to be described.

Below, mainly the function A(t) is reviewed, with reference to its properties that make
it possible to choose the distribution B(t), calculate the main parameters of the D(t) and E(t)
processes, as well as to choose the ideal control algorithms represented as the process C(t).

2.1. Two Models of the Arrival Process

It is expedient to consider the request flow as a sequence defined on the “Time”
axis, which is usually denoted by the letter t. On this axis, it is possible to single out
time moments, xi, at which requests arrive at the queuing system input. The xi values
correspond, for example, to those time moments when packets arrive at a multiservice
node. The request flow is random. There are also deterministic request flows. For them,
the values of xi are given by the predetermined schedule. The analysis of such a request
flow is not related to the study of random variables.

Figure 2 shows five moments of time, xi, at which requests arrive at the queuing system
input. The size of the i-th time interval between the moments of arrival of neighboring
requests is ti. Therefore, ti = xi − xi−1 for all i ≥ 1.
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Figure 2. First model of the arrival process.

The model shown in Figure 2 contains all the necessary information about the arriving
request flow under the condition that at any moment of time, xi, only one request may
arrive. Otherwise, it is necessary to set the values of ki, which determine the number of
requests arriving at the time moment, xi. For the model under consideration, ki = 1.

Let us suppose that, at time moments x1 and x4, two requests arrive at the queuing
system input at once. The second request flow model should be used then. This is shown
in Figure 3. The “Number of Requests” ordinate axis, which allows the specification of all
the values of ki, is added to it. The second request flow model is rarely used in practice.
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Let us return to Figure 2. Statistical information on the ti values allows the determina-
tion of the CDF A(t). Methods for solving this problem will be described below.

Let us suppose further that, for the selected function A(t), there is a Laplace–Stieltjes
transform [8], which is denoted as α(s). Then, the average value of the interval size
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between the arrivals of neighboring requests A(1) is determined via one of the following
two formulas:

A(1) =
∫ ∞

0
tdA(t), A(1) = −dα(s)

ds
, with s = 0. (3)

The values of λ and A(1), as stated above, are related to each other by a simple relationship:

λ =
1

A1 . (4)

The A(t) function can be built based on the measurement results that is the histogram
a(t). The distribution A(t) will be then a stepwise function. In this case, there is always
a Laplace–Stieltjes transform for it. It is obvious that when using the Laplace–Stieltjes
transformation, the calculation of the value A(1) and other characteristics of the random
variable is simplified due to the use of differentiation instead of integration.

2.2. Handling of the Function a(t)

The histogram a(t) built following the measurement results can be represented by its
Laplace–Stieltjes transform α(s):

α(s) = ∑n
i=0 pie−iτs. (5)

In this formula, τ is the period, with which the increments of the measured function
equal to pi are sampled. The value n defines a point on the abscissa axis for the last
pi value. The following condition always holds: n < ∞. Let us note that most of the
approximations of the function A(t) in the queuing theory are based on distributions
defined in [t0, ∞). Moreover, t0 = 0 for a significant part of the studied models. Typically,
all such approximations lead to significant errors in the study of queuing systems.

It is necessary to select the value of τ before taking measurements. It is appropriate to
define it as the greatest common divisor for the entire set of fixed values of time intervals
between packet arrivals [9]. In this case, the CDF A(t) represents the law of packet arrival
more accurately.

The top of Figure 4 shows an example of a histogram a(t). Below are the transformed
aU1(t) and aU2(t) histograms for which the period τ is doubled and quadrupled, respec-
tively. The subscript “U” (the first letter in the word “upper”) indicates the fact that
the ordinate values for the histograms aU1(t) and aU2(t) are calculated by summing them
(within the time interval under consideration) to the nearest larger value of t/τ. This method
of transforming the a(t) histogram, which is proposed for example in [10], is hereinafter
referred to as option I. In the general case, the histograms describe asymmetric distributions
of the form A(t).

Figure 5 shows the histogram a(t) and two results of its transformation, as determined
by option II. The subscript “L” (the first letter in the word “lower”) indicates the fact that
the ordinate values for the histograms aL1(t) and aL2(t) are calculated by summing them
(within the time interval under consideration) to the nearest smaller value of t/τ. The two
options for the transformation of the function a(t) make it possible to obtain the lower and
upper limits for the numerical characteristics of the investigated random variable. Usually,
such assessments are enough to solve the problem. However, if necessary, other methods
of transformation of the function a(t) can be used.

As a result of the transformation of the function a(t) in both options, the numerical
characteristics of the measured random variable vary. This can be seen from Table 1,
which shows the average value of A(1) and the coefficient of variation CA of the studied
random variable.
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Table 1. Characteristics of the measured function.

Characteristics
Types of the Studied Functions

a(t) aU1(t) aU2(t) aL1(t) aL2(t)

A(1) 3.444 4.000 2.889 4.889 2.000

CA 0.776 0.667 0.958 0.582 1.374

Based on the numerical values given in Table 1, the occurring errors are very significant.
This allows two conclusions to be drawn on the reasonable choice of scales when processing
measurement results:
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• option I, in which “enlarging” the scale, provides an upper estimate for the mathemat-
ical expectation and a lower estimate for the coefficient of variation;

• option II, in which “enlarging” the scale, provides a lower estimate for the mathemati-
cal expectation and an upper estimate for the coefficient of variation.

This means that, when processing the measurement results, it is not advisable to
enlarge the scale along the abscissa, that is, it is recommended to use the minimum value
of τ. In this case, the accuracy of the obtained results will be maximum (this aspect of
processing the measurement results is described in more detail below). The complexity of
assessing all numerical characteristics of random variables at a minimum value of τ does
not increase substantially due to the possibility of automatic input of statistical data and
calculations on a personal computer or another computing device.

It should also be noted that a queuing system with a stepwise function A(t) and a
constant packet processing time knows a method for calculating the moments of waiting
and delay duration [11]. These moments make it possible to assess the characteristics
of the quality of service for packet multiservice networks and compare them with the
standardized indicators [12].

2.3. Choice of Function A(t) Based on a Reasonable Hypothesis

Let us suppose that approximate assessments of A(1) and CA are known. However,
there are no measurement results that allow the choice of the function A(t). It is appropriate
to distinguish two classes of distributions A(t). The first one is set for a limited time interval,
[t0, t1]. In some cases, t0 = 0. Further, similar CDFs are denoted as A1(t). The subscript “l”
is the first letter in the word “limited”. The subscript “u” (from the word “unlimited”) is
used to denote the AU(t) as determined on the interval [t0, ∞).

Estimates of A(1) and CA allow the choice of two-parameter distributions: A1(t) and
AU(t). A suitable example of a function from the Al(t) family is the beta distribution [13,14].
Of practical value is a case in which the coefficient of variation CA exceeds one. For this
condition, it is appropriate to choose the Weibull distribution from the functions of the
AU(t) family [14]. However, other types of the AU(t) function lead to results close to those
of the Weibull distribution.

A particular interest in ensuring the normalized quality of service indicators for
multiservice traffic is associated with the operation of queuing systems under conditions
of increased load, ρ. Taking into account the accepted designations, the value of ρ is
determined by the ratio of λ to the service intensity µ:

ρ =
λ

µ
(6)

Approximate formulas for assessing the average request delay time S(1) in a queuing
system at a high load are given for example in [15,16] for a model with arbitrary CDFs A(t)
and B(t). For AU(t) and Al(t), the results, which are given in [15,16], can be represented in
the following form [17], under the condition of a constant request holding time:

S(1) ≈ B
[

1 + ρ2C2
A

2(1−ρ)

]
, f or AU(t), i f 1 > ρ ≥ 0.7;

S(1) ≈ B
[

1 + ρC2
A

2(1−ρ)

]
, f or Al(t), i f 1 > ρ ≥ 0.7.

(7)

The choice of a model with constant holding time is justified by the fact that all packets
in the switching nodes of the multiservice network are processed in the same way. This
allows the introduction of a reasonable assumption about the constancy of the request
processing time [18].

Clearly, the average value of the packet delay time for distributions of the form Al(t)
will be greater in comparison with that of the model, which is characterized by the function
AU(t). A significant difference between the Al(t) and AU(t) is also observed for the
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probability of packet loss, π. Figure 6 shows the dependences of the probability of packet
loss on the load for two distributions of the form Al(t) and AU(t). The coefficient of
variation, CA, for both types of distribution is chosen to be equal to ten.
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More significant packet losses for the functions Al(t) are associated with the fact that
the duration of the idle period in the corresponding queuing model is limited to t1. There is
no such limitation for the functions AU(t). To assess the upper limit π, which corresponds
to the model with the function Al(t), an approximate formula was proposed in [17] if the
packet processing time is constant and the capacity of the queue is limited to r:

π ≈ (1− ρ)ρ
2r

C2
A . (8)

Formulas (7) and (8) make it possible to assess the characteristics of the quality of
service with an error of no more than 20%. This statement applies to a wide class of
distributions included in the AU(t) family. It is also true for the beta distribution in the Al(t)
family. Among other distributions of the form Al(t), the correctness of Formulas (7) and (8)
was checked by analyzing the histograms obtained as a result of traffic measurements in the
operated multiservice network. It turned out that both relationships are quite acceptable
for the analysis of models with an arbitrary nature of the distribution included in the
family Al(t).

2.4. Reducing the Number of Samples in the Histogram a(t)

As a result of measurements of the request flow, a histogram with a very large number
of readings can be generated; this number is determined by the value of n. In this case, the
clarity of the function A(t) is sometimes lost. The coefficient of variation, CA, will be used
for a number of subsequent assessments. For Function (5), it is calculated as follows:

CA =

√
∑n

i=0 i2 pi

(∑n
i=0 ipi)

2 − 1 (9)

To construct the initial a(t) histogram, the number of values of the measured random
variable, which is equal to n + 1, is used. An example of such a histogram is shown in the
upper part of Figure 7. It is assumed that 25 values of the measured random variable, which
are denoted, in the general case, as the set {Z}, are obtained. In this case, the readings at
the points 7τ, 9τ, and 11τ are considered rare phenomena that insignificantly affect the
nature of the distribution A(t). In some cases, there is a desire to discard them, that is, to
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reduce the set {Z}. Subsequently, a histogram g(t) is generated (option (b)). The third
solution, as shown at the bottom of the same figure, is to replace the rare iτ values with
one increment observed x times and located at the mτ point. In the example used, m = 9.
Then, another histogram h(t) that is represented by option (c) is generated.
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First, let us consider an option of transforming the initial histogram, for which the
results in the region t

τ > 5 are neglected. In this case, to construct the histogram g(t) and
the corresponding distribution function, the set {Z} will include 22 elements.

The last reading for the histogram h(t) is denoted as x. In the example under consid-
eration, x = 3. It is necessary to choose a value m, for which the value of x is transferred
to the mτ point. The criteria for choosing the value of m are the proximity of the values
of A(1) and CA for both histograms. The value of m is estimated numerically using the
following approach:

I. Characteristics of a random variable A(1) and CA for the a(t), g(t), and h(t) histograms
are denoted as A1(a), CA(a), A(1)(g), CA(g), A(1)(h), and CA(h), respectively.

II. The values of mA and mc are found by numerical solution of the equations
A(1)(a) = A(1)(h) and CA(a) = CA(h).

III. One value of m that is equal to the maximum value of the pair of mA and mc
is selected.

In fact, you may choose a value for m that is not an integer. However, in the case of a
small value of τ, such an approach will not lead to a noticeable increase in the accuracy
of the main investigated characteristics of a random variable. It is possible to use the two
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values of m, which are denoted below as m1 and m2, respectively. The m1 value is obtained
by discarding the significant digits after the period (comma) in the resulting m value. Then,
m2 = m1 + 1.

2.5. Three Numerical Examples

The first numerical example is related to the estimation of the error when discarding
the last three readings. For this purpose, one should use formulas that allow the calculation
of the values of errors obtained the investigated characteristics of a random variable. For
the value A(1), the relative error was about 26%, and for the CA values it was about 25%.
Typically, these error values are not considered acceptable. For this reason, the use of
histograms of the form g(t) does not seem reasonable.

The second numerical example is related to the choice of the m value. For this purpose,
it is first required to solve two equations: A(1)(a) = A(1)(h) and CA(a) = CA(h), clause II of the
previous section of the paper. This will allow the choice of the m value.

For the histogram h(t), it is appropriate to choose the value of m = 9. Then, the values
A(1) and CA for the histograms a(t) and h(t) will compose the following pairs: 3.08 and
3.08, 0.86 and 0.84. This means that the mean values coincide, and the relative error in
calculating the coefficient of variation is about 2.3%. It is possible to choose another value
of m, for which the relative error in calculating the coefficient of variation will be zero. Then
there will be differences in the mean values. If the error in estimating the coefficient of
variation at the level of 2.3% seems to be acceptable, then the choice of the value of m = 9
should be considered justified.

A more general methodological approach is based on the use of both mA and mc
values, that is, the operation specified in clause III is not required. The mA and mc values
allow the original histogram to be converted into two new functions.

It should be noted that, in order to obtain guaranteed upper values of the studied
characteristics, it is better not to neglect the operation provided for in clause III. In other
words, it is advisable to use only one value of m for further analysis, which is the larger
among the pair of mA and mc.

The third numerical example is related to the influence of the location of the last
reading on the abscissa axis. The size of this reading is also significant. This is the last
increment on the histogram h(t). Let us suppose that the last reading is shifted to the right
along the abscissa axis at different distances. The last increment for the histogram h(t) is
0.04. Table 2 shows the dynamics of growth of characteristics A(1) and CA during the shift
of the last reading of the measured random variable. The location of the last reading is
indicated by the letter “m”. For the second row in Table 2, the condition m = n is true.

Table 2. Dependence of the values of A(1) and CA on the value of m.

Value m Value A(1) Value CA

11 3.08 0.86

21 3.48 1.19

31 3.88 1.52

101 6.68 2.90

501 22.68 4.31

The data given in the table indicate that even small values of pm that are located at
a noticeable distance (along the abscissa axis) from the main part of the observed values
will significantly affect the characteristics of the studied random variable. For this reason,
ignoring the tail of the distribution function is fraught with dramatic distortions of the
measurement results.

The value of the last pn increment in this example may seem significant. For this
reason, it makes sense to repeat the calculations by artificially increasing the number of
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observations for the process under investigation to the nτ point. If all the initial ordinate
values (except for the last one) are increased ten times in the h(t) histogram, then the values
of A(1) and CA will become different. They are shown in Table 3. As in the previous table,
the point where the last reading is located is denoted by the letter m.

Table 3. Changes in the values of A(1) and CA.

Value m Value A(1) Value CA

11 2.36 0.70

21 2.41 0.82

31 2.45 1.00

101 2.77 2.45

501 4.56 7.31

Both tables illustrate the fact that the last reading remains an important quantity for
assessing the CDF A(t). It cannot be neglected. The correctness of replacing several readings
located at a distance from their main mass by the value of the histogram located at the mτ
point requires a detailed discussion. Another very important conclusion that can be drawn
from the data of both tables is that, for small values of the last reading, A(1) increases not so
noticeably, but CA increases faster.

Another important issue should be the definition of that range of values of the studied
distribution, t > tx, which can be considered as a tail. If the CDF A(t) is obtained as a
result of measurements, then it is not difficult to set the value of the sought function at
this point, which is denoted below as Rx, for the value of tx. In mathematical statistics, the
correlation of a part of the distribution of a random variable with the concept of “tail” is
carried out subjectively. Let us take the following definition as an initial hypothesis: the
tail is the part of the distribution that includes all values of t > tx, for which A(t) > Rx,
along the abscissa axis. The Rx threshold is usually 0.90, 0.95, or 0.99. If the distribution
under investigation is given analytically, then the value of tx is usually found numerically
by solving the equation A(tx ) > Rx. In rare cases, the value of tx can be found explicitly
after solving this equation.

2.6. Accuracy Criteria for Solving the Problem

The closeness of the mean values and the coefficients of variation for the two distribu-
tions does not mean that the output of the model, which is a queuing system, will yield
results with acceptable accuracy [19]. Practical interest is associated with the quality of
service indicators, standardized for multiservice networks [12]. Of which, it is appropriate
to single out the average request delay time in the queuing system, S(1), and the p-quantile
of the same random variable, tp. The closeness of these values for different distributions
becomes a criterion for the accuracy of solving the problem.

To investigate the arising errors, it is appropriate to choose a model with one server of
the G/M/1 type in Kendall’s classification [20]. This model is convenient because it allows
an analytical search of all the necessary characteristics of a random variable, such as the
requests’ delay time in the queuing system. The model assumes that the holding time
of requests is a random variable distributed exponentially. The value of the intensity of
servicing requests is equal to µ. The distribution law A(t) can be arbitrary.

First, it is necessary to solve the equation given, for example, in [21]. Taking into
account Expression (5), it can be represented in the following form:

σ = ∑n
i=0 pie−iτµ(1−σ) (10)
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The value of σ is the only root of Equation (10) within the range from zero to one.
After finding the value of σ, the values of S(1) and tp are calculated using the following
formulas [21]:

S(1) =
1

µ(1− σ)
, tp = − ln(1− p)

µ(1− σ)
(11)

When using different histograms, different values of the parameter σ are obtained.
This determines the occurring errors. Let us suppose that when analyzing two histograms,
the values of σ1 and σ2 were obtained. Using Formula (11), it is easy to show that the
relative errors in assessing the quantities S(1) and tp are equal. This makes it possible to
denote the relative error with the letter δ without using indices. Therefore, the following
relationship holds:

δ =
|σ1 − σ2|
(1− σ2)

(12)

The values of σ1 and σ2 depend on the load of the queuing system ρ. The greater the
load of the queuing system, the closer the values of the parameters σ1 and σ2 to one. This
means, based on Expression (12), that the error δ can noticeably increase at a large load
unless the values of σ1 and σ2 become very close to each other. To analyze the operation
of queuing systems under conditions of a dramatically increasing load, it is appropriate
to investigate the dependence of δ = f (ρ). For this purpose, the value of the service
intensity, µ, should be changed within the limits that allow investigation of the dependence
of δ = f (ρ) in the high-load range of interest.

When solving problems of designing networks and their individual components, the
level of acceptable (permissible) load for which the investigation of the dependence of
δ = f (ρ) is rather irrelevant is selected. An important issue is the solution of the so-called
inverse problem. For the G/M/1 model, the assessment of the values of S(1) and tp calculated
using Formulas (11) is the simplest example of a direct problem. The inverse problem is to
assess the value of µ under the given limitations on the permissible levels of the values of
S(1) and tp. For the G/M/1 model, the inverse problem is solved in an elementary way, but
the result is two values of the required service intensity, of µ1 and µ2:

µ1 =
1

S(1)(1− σ)
, µ2 = − ln(1− p)

tp(1− σ)
(13)

Since both limitations should be met, the value of µ is chosen as the maximum one
from the pair µ1 and µ2. It follows from Relationships (13) that the values of µ1 and µ2
are inversely proportional to the normalized value that can be denoted by the letter “z”.
The rest of the variables included in Relationships (13) represent a certain constant. Let us
denote the relative error in assessing the z as δz. After a series of simple transformations,
the following assessment can be obtained for the relative error in the calculation of the
service intensity, δµ:

δµ ≤ δz
2

(1− δz)
. (14)

In the area of generally accepted levels of δz (units of percents), when solving the
inverse problem, the relative error doubles. This conclusion should be taken into account
when carrying out calculations related to the design of those hardware and software
facilities, the models of which can be represented by a queuing system.

2.7. Two Additional Tasks

The results obtained make it possible to solve two additional tasks of great practical
significance. The first task is related to the choice of the approximating function f (t), which
is a composition of two or more known distribution laws of random variables. The meaning
of the second task is to sample the histogram a(t), which is a continuous function using
Expression (5). Then the analysis of a number of models can be simplified.
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The measurement results show that, very often, the histograms a(t) have several
extrema. For this reason, the measurement results are difficult to represent using one
of the known distribution laws of random variables. It should be noted that such an
approximation is useful for clarity but ineffective for the subsequent analysis of models
due to the possibility of the occurrence of significant errors.

Analysis of a large number of histograms showed that the composition of two dis-
tributions given at different intervals along the abscissa axis is used more often. Figure 8
shows the original histogram a(t) with two extrema, as well as two functions, ϕ1(t) and
ϕ2(t). These functions approximate the histogram a(t). Figure 8 gives examples of the
Erlang distribution of the order k and the Simpson distribution [22], respectively.
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The approximating f (t) function can be represented as follows [22]:

f (t) =


λk

(k−1)! t
k−1e−λt, i f 0 ≤ t < ∞

2
t2−t1

[
1− |t1+t2−2t|

t2−t1

]
, i f t1 ≤ t ≤ t2

. (15)

The illustration above and Relationships (15) allow a better understanding of the
nature of the CDF A(t). In some cases, the physical nature of the process of request arrival
in the queuing system becomes clear.

For some types of the functions A(t), it is impossible to obtain relationships for analyz-
ing the parameters of the request delay time. Then, the A(t) can be replaced by a stepwise
function. The results of solving this task are given in [11]. They allow the sampling period,
d, to be determined, with which readings of the values of a(t) are required to be taken.

Let us assume that the admissible relative error, δ, is given, which determines the accu-
racy of the estimation of the delay time parameters. If the coefficient of variation, CA does
not exceed one, then the numerical value of d is determined from the following inequality:

d ≤ 2δ

λ
(16)

In some cases, the coefficient of variation, CA, significantly exceeds one. Therefore, it
is required to apply another formula:

d ≤ 2δ

λCA
(17)

Expression (17) allows more accurate values of the sampling period, d, to be obtained
for the functions A(t) with a very high coefficient of variation. These functions often reflect
the actual processes of packet arrival to multiservice nodes. Moreover, high CA values are
typical for multiservice node congestion modes. Such phenomena are often observed in
emergency situations that generate a dramatic increase in traffic [17].
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2.8. Areas for Further Research

According to the authors of this paper, further research should be carried out in four
main fields. These fields are indirectly related to each other since they pursue one goal. It
consists in optimizing a number of basic processes related to servicing multiservice traffic.

The first field of further research is related to the analysis of the stability of histograms,
which are obtained following the result of measuring traffic parameters. Packet traffic is
subject to dramatic fluctuations. For this reason, it is necessary to assess the results obtained
in terms of their stability.

The second field of further research is aimed at solving forecasting problems. Changes
in the form of the histograms and their parameters may serve as a good base for predicting
changes in the CDF A(t). The results of such a forecast are important, in turn, for the design
of telecommunication networks, as well as for their management in the event of congestion.

The third field is tied to the relevance of the analysis of the functions A(t), in which the
value of the intensity of the arriving request flow is not a constant value. In other words, it
is advisable to obtain results that will be similar to those obtained in this paper but after
the λ(t) function has been introduced instead of a point assessment for the intensity of the
request flow.

The fourth field is related to the study of continuous functions that are represented
by histograms. This approach is relevant for the investigation of symmetric beta distribu-
tion [22]. It is recommended for the analysis of traffic related to the Internet of Things [13].

3. Conclusions

The proposed methodology aims at describing the process of packet arrival at the input
of a switching node in a multiservice network with acceptable accuracy. The developed
methodology is based on analytical methods. Its use minimizes the errors arising during
the study of multiservice network characteristics.
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