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Abstract We have been studied the model of light Galileon with translational shift sym-
metry φ → φ + c. The matter Lagrangian is presented in the form Lφ = −η(∂φ)2 +
βGμν∂μφ∂νφ. We have been addressed two issues: the first is that, we have been proven
that, this type of Galileons belong to the modified matter-curvature models of gravity in type
of f (R, RμνT m

μν). Secondly, we have been investigated exact solution for spherically sym-
metric geometries in this model. We have been found an exact solution with singularity at
r = 0 in null coordinates. We have been proven that the solution has also a non-divergence
current vector norm. This solution can be considered as an special solution which has been
investigated in literature before, in which the Galileon’s field is non-static (time depen-
dence). Our scalar-shift symmetrized Galileon has the simple form of φ = t , which it is
remembered by us dilaton field.
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1 Introduction

It is well established that Einstein gravity is the best description gravity as a gauge theory
[1]. It predicts relativistic effects like light’s bending and the existence of most compact
objects of the Universe, black holes perfectly. To have a more precise description of our
Universe we need to be able to explain not only our solar system but the large scales, in
cosmological scales. When we observed our Universe evolve in an accelerated sheme [2–
4], and most part of the matter (energy) of our Universe is unknown, we fell to work with
modified gravities, one of the best candidates to have a reasonable extension of Einstein
gravity to large scales (see [5–17]). There are several types of modified gravities. One of
the first ones was f (R) gravity [18] in which we just replace the usual scalar term R by
an arbitrary function f (R) which it was found many applications in cosmology. Another
approach is to address gravity as gauge theory but from a different point of view, in which
the space-time does not have any curvature but it has ”torsion”, T , it has been introduced as
a valid modification (different description) of gravity [19–22] and it has been investigated
to resolve several problems of cosmology [23–32].

One particularly interesting view is to keep Einstein gravity and add some types of scalar
scalar-tensor Lagrangians . The main point is to keep the order of the equation of motion
at second order and not higher, to avoid problems with higher derivatives like Ostrogradski
instability [33]. The most general form of such scalar-tensor Lagrangians was founded by
Horndeski [34] and it has recently been rediscovered independently in [35]). Such higher
order models of scalar-tensor is naturally appeared in Brans-Dicke gravity [36] or some
recently studied models like [42–47]. The name of a scalar field is changed to gallon
since the model respects to the Galilean symmetry φ → φ + bμxμ + c, and the mod-
els are called by Galilean theory [48]. One station to merit such models as higher order
scalar-tensor Lagrangians but with second order field equations, is when we are investi-
gating the Kaluza-Klein compactifications scheme in the framework of Lovelock densities
in higher dimensional spacetimes [37–43]. Recently much attentions have been done of
galileons [52–56] as one desirable model of scalar field of early and late time history of
Universe.

In this paper we study the type of Galileons with translational symmetry φ →
φ + c. The simplest lower order Lagrangian of such models is contained by two terms
(∂φ)2,Gμν∂μφ∂νφ. The Lagrangian is written as the following Lm = −η(∂φ)2 +
βGμν∂μφ∂νφ where η, β are a couple of parameters. We address two issues about such
models:

• The model is identified as a modified gravity in the form of f (R,RμνT m
μν).• The model posses the exact spherically symmetric solution with time dependent

galileon.

Before in literature it was proven that such solution exists [69–71] and has non-
divergence norm, in our work we also address this important issue about regular solutions.
Our plan in this letter is as the following: In Section 2 we review Horndeski’s models from
a modern point of view. In Section 3 we will prove the formal equivalence between this
type of Galileon and matter-curvature coupled modified gravity. In Section 4 we will find
the exact solution in spherical symmetry. In Section 5 we will study perturbations. The last
section is devoted to conclude the results.
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2 Horndeski’s Model of Scalar-Tensor Gravity

As we said it before, the idea of the construction of scalar-tensor models with the most
general higher order terms but with second order field equation was belonged to [34] who
proposed the Lagrangian densities from a mathematical point of view . But very recently
the Horndeski’s densities have been revisited in an elegant new form in [55] (see [56] for
associated equations of motion). To revisit Horndeski’s model in new dress, let us start with
the following general second-order scalar tensor theory is given by:

S = SH [gμν, φ] + Sm[gμν;�n] (1)

Here the Horndeski action, SH = ∫
d4x

√−gLH , can be rewritten from the Eq. 4.21 of
[34], in the following non-trivial form:

LH = κ1(φ, ρ)δαβγ
μνσ ∇μ∇αφR νσ

βγ − 4

3
κ1,ρ(φ, ρ)δαβγ

μνσ ∇μ∇αφ∇ν∇βφ∇σ ∇γ φ

+κ3(φ, ρ)δαβγ
μνσ ∇αφ∇μφR νσ

βγ − 4κ3,ρ(φ, ρ)δαβγ
μνσ ∇αφ∇μφ∇ν∇βφ∇σ ∇γ φ

+[F(φ, ρ) + 2W(φ)]δαβ
μνR

μν
αβ − 4F(φ, ρ),ρδαβ

μν∇αφ∇μφ∇ν∇βφ

−3[2F(φ, ρ),φ + 4W(φ),φ + ρκ8(φ, ρ)]∇μ∇μφ + 2κ8δ
αβ
μν∇αφ∇μφ∇ν∇βφ

+κ9(φ, ρ),

ρ = ∇μφ∇μφ, (2)

where {κi(φ, ρ)}i=1,3,8,9, are a set of arbitrary functions of the scalar field (Galileon) φ . To
have dynamic for Galileon, we add kinetic part of ρ. Furthermore, we know that:

F,ρ = κ1,φ − κ3 − 2ρκ3,ρ (3)

here W(φ) is an arbitrary function of the scalar field. The most important comment which
we must indicate here is that Horndeski’s theory is equivalent to the generalised scalar ten-
sor theory if we limited ourself to four dimensions [35–51]. The main reference about this
equivalence is [52]. This last reference also provided the full catalog to work with Horn-
deski model. Except then the model given by (2) is too much complicated, a suitable simple
Lagrangian’s form can be derived in which it respects to the translational(shift) symmetry
of field φ → φ + c, which it is written in the most simplest form as the following:

L = −η(∂φ)2 + βGμν∂μφ∂νφ (4)

In next section we shall show that how this minimal Horndeski’s model is equivalent to the
modified gravity in the form of curvature-matter models.

3 Equivalence of Light Galileon to Curvature-Matter Coupled Models Of
Gravity

A class of modified theories of gravity has been discovered in which geometry is coupled
to the matter field(s) non minimally, via Lagrangian of matter or energy-momentum tensor,
with the following general Lagrangian [57]:

S =
∫

d4x
√−gf (R, T μ

μ ,RμνTμν,Lm) (5)
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Where Lm = −η(∂φ)2, T m
μν = Lmgμν − 2 ∂Lm

∂gμν . For the simple case of f (R, T
μ
μ )it has

been investigated in several problems from cosmology to black holes [57–65]. The new
extension of such models has been proposed recently as [66, 67] f (R, RμνT m

μν). Now we
prove a theorem in which we show that Galileon with translational symmetry is equivalent
to a type of f (R, RμνT m

μν) theory.

Theorem 3.1 Translational invariance Galileon lagrangian with the following action:

S =
∫

d4x
√−g

(
ξR − η(∂φ)2 + βGμν∂μφ∂νφ

)
. (6)

is equivalent to the f (R,RμνT m
μν) theory.

Proof Firstly we should clarify that the action given by Sφ is just the translational summa-
rized galileon model. To have the correct form of the Einstein-Hilbert action as the limiting
form, we set ξ = 1

16πG
. The notations are (∂φ)2 = gμν∂μφ∂νφ. Gμν is Einstein tensor

is defined by Gμν = Rμν − R
2 gμν . The model is invariant under translational symmetries

φ → φ + c [69]. Phenomenologically, we can say that such models describe light Galileon,
the Galileons without potential forms. We rewrite we introduce the Lagrangian of matter
fields as the following:

Lm = −η(∂φ)2 (7)

The associated energy-momentum tensor is written as the following:

T m
μν = η

[
2∂μφ∂νφ − gμν(∂φ)2

]
(8)

we can write the following expression:

RμνT m
μν = η

[
2Rμν∂μφ∂νφ − R(∂φ)2

]
(9)

Using Gμν = Rμν − R
2 gμν we rewrite it as the following:

RμνT m
μν = 2ηGμν∂μφ∂νφ (10)

consequently it is possible to write (6) in the following equivalent form:

S =
∫

d4x
√−g

(

ξR + β

2η
RμνT m

μν

)

+
∫

d4x
√−gLm. (11)

where Lm = −η(∂φ)2, so now we observe that the model is in the following modified
gravities models. Q.E.D

To find the equation of motion (EOM) of metric field , we vary the action given by
Eq. (11) with respect to the metric , we obtain:

fRGμν + gμν

[

�fR + R

2
fR − f

2

]

− ∇μ∇νfR − Tμν

2ξ
= 0. (12)

For our model we’ve:

Gμν − β

2ξ
gμν

[
Gαβ∂αφ∂βφ

] = η

2ξ

(
2∂μφ∂νφ − gμν(∂φ)2

)
. (13)

Or equivalently:

Rμν + β

2

[
Gαβ∂αφ∂βφ

]
gμν = −μ∂μφ∂νφ, . (14)
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here μ = − η
ξ
. We mention here that we have also the following EOM for φ (or the

momentum constraint ) as the generalized Klein-Gordon equation:

∇ν

[
βGμν∇μφ − η∇νφ

] = 0. (15)

Using the metricity condition ∇νg
μν = 0 and Bianchi’s identity ∇νG

μν = 0 we are able to
rewrite the above EOM is the following form:

[
βGμν − ηgμν

]∇ν∇μφ = 0. (16)

It is adequate to interpret βGμν − ηgμν as the induced metric of hμν = βGμν − ηgμν . So,
(16) reads as the following:

hμν∇ν∇μφ = 0. (17)

In the next section we are looking for exact spherically symmetric solutions of (14,16).

4 Searching for Exact Spherically Symmetric Solutions

Our aim here is to find an exact solution for static spherically symmetric metric in the
following form:

ds2 = A(r)dt2 − B(r)dr2 − r2d�2. (18)

here d�2 ≡ dθ2 + sin2 θdϕ2. The form of metric given by A(r)B(r) = 1, is not required
because we are not sure that null energy condition satisfies as well as the fact that the radial
photon experiences acceleration or not [68].

For metric given by (18) we rewrite (16) in the following form:

[
βGtt − ηgtt

]
(

φ̈ − A′

2B
φ′

)

+ [
βGrr − ηgrr

]
(

φ′′ − B ′

2B
φ′

)

= 0. (19)

Note that φ = φ(t, r). In general this equation is too much complicated to solve. Here we
are interesting to study non-static (time dependent) Galileon (for a more general case see
[69]). By this reason, we assume that φ = φ(t). By this Ansatz we obtain:

[
βGtt − ηgtt

]
φ̈ = 0. (20)

One possibility is to have φ̈ = 0 but
[
βGtt − ηgtt

] �= 0. If we relax φ̈ = 0, the case
with

[
βGtt − ηgtt

] �= 0 and
[
βGrr − ηgrr

] = 0, φ̈ �= 0 is well established in [69]. Also
in that Ref. [69], the authors consider φ = φ(t, r). Also they imposed that J r = 0 because
they required to have regular solutions in which the norm of current vector remains finite
on horizon. Actually they found a rich family of solutions by the above assumptions. In our
letter, we explore for exact solutions in which J r �= 0, φ̈ = 0, J t = 0. So, we assume
that meanwhile:

[
βGtt − ηgtt

] = 0 && φ̈ = 0. (21)

With this constraint,the momentum conservation (16) is satisfied identically. So, using
this constraint we obtain:

Gαβ∂αφ∂βφ = Gtt φ̇2 = η

β
gtt . (22)

Here φ̇ = 1. Consequently, the t t, rr components of the (14) read:

Rtt = −
(
μ + η

2

)
, Rrr = η

2

B

A
. (23)
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Using (18) we obtain:

1

2

A′′

B
− 1

4

A′2

AB
− 1

4

A′B ′

B2
+ A′

rB
= μ + η

2
, (24)

1

2

A′′

B
− 1

4

A′2

AB
− 1

4

A′B ′

B2
− A′

rB
= η

2
. (25)

By subtraction we find:

2A′

rB
= μ. (26)

So, the general form of the meric is written as the following:

ds2 = A(r)dt2 − 2A′

μr
dr2 − r2d�2. (27)

To find metric function A(r), we substitue (26) in one of the equations to obtain:

A′′

A′ − A′

A
= 4η + 3μ

μ

1

r
. (28)

We solve it to find:

A(r) = A0e
c

n+1 rn+1
, n = 4η + 3μ

μ
. (29)

Finally we present one exact solution for the system as the following:

ds2 = A0e
c

n+1 rn+1
(

dt2 − 2c

μ
rn−1dr2

)

− r2d�2. (30)

Or equivalently :

ds2 = A0e
c

4(1−ξ)
r4(1−ξ)

(

dt2 + 2cξr2(1−2ξ)

η
dr2

)

− r2d�2, (31)

φ(t; r) = t. (32)

In the units which 8πG = 1, ξ = 1
2 , so the metric reads:

ds2 = A0e
− |c|

2 r2
(

dt2 − |c|
η

dr2
)

− r2d�2, (33)

φ(t; r) = t. (34)

Here c0. Since A0 to be considered as an arbitrary constant, we chose it as A0 = η
|c| . In this

case, we are able to define a new time coordinate τ =
√

η
|c| t and a pair of null coordinates

u = τ − r, v = τ + r , in which the metric is written as the following:

ds2 = e− |c|
8 (v−u)2dudv − (v − u)2

4
d�2, (35)

φ(v, u) =
√

|c|
η

v + u

2
. (36)
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The Kretchmann invariant K = Rαβγ δRαβγ δ of the metric is given by:

K = Y1 − 128 e−1/8 (|c|)2(−v+u)2 + 5 (|c|)4 v4 + 64
(
e−1/8 (|c|)2(−v+u)2

)2
(−v + u)4

,

Y1 = −20 (|c|)4 v3u + 30 (|c|)4 v2u2 − 20 (|c|)4 vu3 + 5 (|c|)4 u4

+64
(
e−1/8 (|c|)2(−v+u)2

)2

(37)

So, as we observe, there is a singularity located at u = v or r = 0 ), as the Schwarzschild
solution in general relativity.

We should check J r for this exact solution. We have:

J r = β

B2

(
B − 1

r2
− A′

rA

)

+ η

B
(38)

Using (26) and (29) we obtain J r �= 0. We conclude:

J 2 = JμJμ = −J 2
r

B
�= 0, J t ≡ 0, φ̈ = 0. (39)

5 Slightly Modified Xanthopolous and Zannias Solutions

If β = 0, there exits an exact solution for (14) was obtained [72]. Buchdahl’s solution as
the following:

ds2 = (1 − 2m

r
)ζ dt2 − (1 − 2m

r
)−ζ dr2 − r2(1 − 2m

r
)1−ζ d�2. (40)

Where φ0 = λ ln(1 − 2m
r

), ζ = ±√
1 − 2μλ2. It has been proven that the above metric

with scalar field φ ≡ φ0 is an exact solution of Einsten field equations with massless scalar
field with the following action:

S =
∫

d4x
√−g

(
R + μ∇αφ∇αφ

)
. (41)

Which it satisfies the equation of motion Rαβ = −μ∇αφ∇βφ. The solution was founded
by Buchdahl by an intuitive and elegant application of reciprocal metrics. It was proven
that the solution is a black hole with a singularity at r = 0 and the horizon located at
r = 2m. Furthermore, it was shown that in the absence of scalar field, μ = 0, the solution
is recovred by the empty spacetime Schwarzschild solution. Our aim here is to extend and
use Buchdahl’s solution to find an approximated solution for (14). We take in to the account
that the nonlinearity parameter β is smallness parameter and we try to extend the solutions
of (14) in a series of perturbations. Another form of the two parameters family of exact
solutions founded later for a general D ≥ 4 spacetime, which is in the following form (is
written for D = 4 [73] 1:

ds2 =
[

r − r0

r + r0

]2γ
dt2 −

[
1 − (

r0

r
)2

]2 [
r − r0

r + r0

]−2γ (
dr2 + r2d�2

)
. (42)

1We changed the singnature to kept the regularity of our work
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Where the scalar field is obtained by the following form:

φ(r) =
√
2(1 − γ 2) ln

[
r − r0

r + r0

]

(43)

As it was shown , the spacetime is asyptotically flat, furthermore the scalar field vanishes
at infinity r → ∞. In the absence of scalar field, when γ = 1, the spacetime reduces to
the Schwarzschild metric which is written in isotropic coordinates. The case with γ = −1
represents the Schwarzschild solution with negative mass which it has a naked singularity.

Our aim here to find the exact solution (black hole) with β �= 0 for (14). One possibility
is to use perturbation method around this exact solution (β = 0 case) as the following:

gμν = g0
μν + βδgμν + ..., (44)

φ = φ0(r) + βδφ(t, r) + ... (45)

where {g0
μν, φ

0(r)} are given by (42,43) and try to find the first order corrections
{δgμν, δφ(t, r)}. The perturbated equation in first order O(β) is written as the following:

δRμν + 1

2
(∂r (φ

0))2(g0
μν)δG

rr = −μ
[
∂μφ0∂νδφ + ∂νφ

0∂μδφ
]
. (46)

Here

δRμν = ∇ρ(δ�ρ
μν) − ∇ν(δ�

ρ
ρμ) (47)

where

δ�σ
μν = 1

2
gσλ

(
δgμλ;ν + δgνλ;μ − δgμν;λ

)
. (48)

We assume that the perturbated metric is given by:

ds2 =
[

r − r0

r + r0

]2γ
eβF(r)dt2 −

[
1 − (

r0

r
)2

]2 [
r − r0

r + r0

]−2γ

e−βH(r)
(
dr2 + r2d�2

)
.

(49)
where the perturbations functions {F(r),H(r)} to be small in comparison to the g0

μν . If
we compute the Einstein tensor for (49) we obtain, in the first order perturbation theory of
{O(F (r)),O(H(r))}, the component δGrr is given by:

δGrr = −
(
(r4 − 2 r3r0γ + 2 rr0

3γ − r0
4)F ′(r)

+(−r4 + r0
4)H ′(r)

)
r7(r − r0)

−6+4 γ (r + r0)
−6−4 γ (50)

Also we read:

δRtt = − r4(r2F ′′ + 2rF ′ + 2F ′r0γ − 2γ r0H
′ − F ′′r02)

2(r + r0)3(r − r0)3
(51)

δRrr = 1

2r(r2 − r20 )

(
(−2H ′′+F ′′)r3−2H ′r2+(2γ r0H

′−F ′′r20 + 6F ′r0γ +2H ′′r20 )r

+2H ′r20 − 2(F ′)r20
)

(52)
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So, we obtain:

t t : (−2rγ r0 + r2 + r20 )F ′ − H ′(r20 + r2) + (r2 − r20 )F ′′ + (2γ r0 + 2r)F ′

−2γ r0H
′ = 0, (53)

rt : ∂t (δφ(t, r)) = 0 (54)

rr : 4(γ 2 − 1)((−2r0rγ + r20 + r2)F ′ − H ′(r20 + r2))r3(
r − r0

r + r0
)2γ r20

+r(r − r0)
2(r + r0)

2F ′′ − 2r(r−r0)
2(r+0)

2H ′′+4r0∂r (δφ(t, r))

−2((−3r0rγ + r20 )F ′

+H ′(−r0rγ + r2−r20 ))(r2−r20 )=0. (55)

An additional equation is needed which we can obtain by variation of (16), it reads as the
following:

[
Gμν − ηδgμν

] ∇ν∇μφ − ηgμν∇ν∇μδφ = 0. (56)

Since φ = φ(r), ∂t δφ = 0, so we have:

δφ′′ − 1

2
grr ∂grr

∂r
δφ′ = 0. (57)

It can be integrated to give us

δφ(t, r) = C1 + C2

∫
dr

(
1 − (

r0

r
)2

)(
r + r0

r − r0

)γ /2

. (58)

If we substituing (58) in {t t, rr} equations we can find {F,H }.

6 Conclusion

This paper is devoted to the study of the model of the light Galileon through the translational
shift symmetry. The Galileon theory is defined to be the most general Lorentz-invariant,
local model of a scalar field whose classical equation of motion possesses Galilean sym-
metry and presenting the avoidance of the presence of ghosts in arbitrary configurations.
In general, the Galileon theory is view as a kind of modified theory of gravity. We address
here two issues to the models, first, identifying it as a modified gravity in the form
f (R,RμνT m

μν), and in the second way, assuming that models present exact spherically solu-
tion with time dependent Galileon. We explored regular solutions and showed that they have
non divergence norm, in the same way as in the literature for other type of solutions.

More precisely, we revised Horndeski’s model from point of view and showed how this
minimal model is equivalent to the modified gravity in the form of curvature-matter models.
By the way we point out and prove a Theorem according to what the considered Galileon
lagrangian is equivalent to the f (R, RμνT m

μν). View like this, the Galileon theory, with
explicit scalar field may be view as gravitational field where the matter is coupled to the
gravity through the the stress tensor. This is quick clear, since the energy momentum tensor
should be written depending on the scalar field. This is an important result presented in this
work.

On the other hand, we search for exact spherically symmetric solutions and observe that
there is singularity located at r = 0 as it is the case for Schwartzchild solution in general
relativity. Attention is also attached to type of Xanthopolous and Zannias solutions, where
we assumed that the nonlinearity parameter is very small and try to extend the solution (6)
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in series of perturbations and obtain the function of perturbation depending explicitly on the
radial coordinate r .
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