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Abstract We propose a generalised de Sitter scale factor for the cosmology of early and late
time universe, including single scalar field is called as inflaton. This form of scale factor has
a free parameter q is called as nonextensivity parameter. When q = 1, the scale factor is de
Sitter. This scale factor is an intermediate form between power-law and de Sitter. We study
cosmology of such families. We show that both kinds of dark components, dark energy and
dark matter simultaneously are described by this family of solutions. As a motivated idea,
we investigate inflation in the framework of q-de Sitter. We consider three types of scenarios
for inflation. In a single inflation scenario, we observe that, inflation ended without any
specific ending inflation φend , the spectral index and the associated running of the spectral
index are ns − 1 ∼ −2ε, αs ≡ 0. To end the inflation: we should have q = 3

4 . We
deduce that the inflation ends when the evolution of the scale factor is a(t) = e3/4(t). With
this scale factor there is no need to specify φend . As an alternative to have inflation with
ending point, We will study q-inflation model in the context of warm inflation. We propose
two forms of damping term �. In the first case when � = �0, we show the scale invariant
spectrum, (Harrison-Zeldovich spectrum, i.e. ns = 1) may be approximately presented by
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(q = 9
10 , N = 70). Also there is a range of values of R and ns which is compatible with

the BICEP2 data where q = 9
10 . In case � = �1V (φ), it is observed that small values of a

number of e-folds are assured for small values of q parameter. Also in this case, the scale-
invariant spectrum may be represented by (q,N) = ( 9

10 , 70). For q = 9
10 a range of values

of R and ns is compatible with the BICEP2 data. Consequently, the proposal of q-de Sitter
is consistent with observational data. We observe that the non-extensivity parameter q plays
a significant role in inflationary scenario.

Keywords Inflation · Observational data · Cosmological solutions

1 Introduction

The inflationary idea was proposed to solve a list of cosmological problems which were
appearing in the context of the standard Big Bang theory [1–9], namely flatness problem
[10–13],horizon problem, the origin of large-scale structure in the universe and relic den-
sity problem. Now it is believed mostly that inflation is a viable and reasonable candidate
describing the very early acceleration expansion of the Universe.One of the simplest candi-
date for inflation is a single scalar field in the framework of slow-roll approximation. This
slow-role assumption is verified by different observational data like the Cosmic Microwave
Background (CMB) temperature anisotropies measured by COBE [14], WMAP [10], and
Planck [16]. From the perturbation point of view, curvature perturbations of the inflatons
has a smooth scale-invariant primordial power spectrum [17–21]. Such basic property is
fundamentally observed and is in great agreement with CMB anisotropies. The main prob-
lem concerning single inflation is how we realize or physically make it obvious. One way
is to realize it as modifications of general relativity as modified gravities (see for review
[22–27]).

From another point of view, we have more strong ideas about an accelerating expan-
sion of the late time and existence of a type of phase transition of radiation to matter
and dark energy, for example the data of the type I Supernovae (SN Ia) [28, 29], CMB
[11] and Baryon Acoustic Oscillations (BAO) [30]. In the last phase, dark energy there
are several proposals like a simple positive cosmological constant � [31, 32] which has a
fine-tuning problem. Also a wide class of scalar fields proposed for dark energy [33–45].
(For a recent review on inflation in the framework of field theories see [46].) As we men-
tioned the modified gravities is more popular and as the first example it was the Starobinsky
model in which we replace Einstein-Hilbert Lagrangian by a quadratic correction term
R → f (R) = R + R2/(6M2) [1], were here as GR, R denotes Ricci scalar and M is a
mass parameter which we need to attend to the de Sitter space-time. We mention here that
according to the recent observational constraints , the equation of state of dark energy which
is the ratio between the effective pressure and dark energy density wDE = PDE/ρDE is in
the interval of wDE −1 [16, 47, 48]. One of the success of modified gravities of type f (R) is
we able to explain −1 < wDE ≤ −1 without any need to have a ghost field [49–60] . Warm
inflation is also a way to attribute inflation which is recently motivated by authors [61–64]
in the context of general relativity and Tachyionic models to teleparallel [65].

In this paper we study a class of cosmological solutions in which the scale factor evolves
as a generalized de Sitter form. It is supposed that the time interval between initial and end-
ing time of inflation is divided into infinite numbers of short time intervals in which in each
of this interval de Sitter is the dominant evolution. But the general evolutionary scheme is a
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non additive function,is called q-exponential or q-de Sitter. This type of generalized func-
tions firstly proposed in statistical mechanics for non extensive systems, thermodynamic
systems far away from the equilibrium points. Entropy of many different physical systems is
non-additive. If you merge two systems with different quantum states and a definite entropy
form, the entropy of the merged system cannot be obtained by simple addition of two
entropies. Indeed it is inspired from the second law of thermodynamics. In the black hole
version, consider two black holes in thermodynamic equilibrium with entropies S(1), S(2).
If we merge these systems, the new black hole has new basic hairs, mass, charge and angular
momentum. The final state has entropy S(1 + 2) in which it always satisfies the following
inequality, so called as the second law of thermodynamic:

S(3) ≥ S(1) + S(2). (1)

The difference between the initial and final states is defined as the non extensivity , or
generalized entropy form:

S(1, 2) = S(3) − S(1) − S(2). (2)

It is straightforward to show that the common form of the entropy, the Boltzmann formula
for distribution of quantum states is no longer valid for such systems.

So far the idea of generalized Boltzmann distributions or q-exponential functions have
been motivated for different areas of physics, but not cosmology. In this paper we apply the
idea of non extended to the time evolution of an early Universe.

In Section 2 we review the mathematical theory of generalized exponential functions,or
q-exponential functions. Our views are statistical physics and mathematical physics.

In Section 3 we investigate cosmological evolution of a flat Friedmann-Lemaı̂tre-
Robertson-Walker (FLRW) universe. We show that how this type of scale factor unifies dark
matter and dark energy in a same scenario.

In Section 4 we study single inflaton models with q-exponential scale factor.
In Section 5we investigate another scenario for inflation with a reheating mechanism.
Section 6 is devoted to conclusions.
Throughout the paper our units are adopted as the following, c = � = 1 , c is the speed

of light and � is Dirac constant, Planck mass Mpl = 2.4357 × 1018 GeV via κ2 ≡ 8πG =
1/M2

pl. We adopt the metric signature (−,+, +,+).

2 q-Exponential Functions: Quick Review

Let us consider a bijective map with the following definition :

f := z → ez, C → C. (3)

This function is called exponential and has the following basic properties:

f (z + w) = f (z)f (w), f −1(z) = ln(z). (4)

Physically it means our system has boosted or translational symmetry in a specific direction.
The function has an inverse and one to one map each point of the domain C to a unique
point on C. We are dealing to interpret this exponential function as the physical probability
of a distinct system formalized with a definite energy and temperature. In statistical physics,
the canonical probability to find a system with the Hamiltonian H of a given system in
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temperature T = 1
β

and in a definite energy E in canonical ensemble is defined by:

pβ(E) ∼ e−βH. (5)

The inverse of this function is defined entropy if we think on the f (z) as the probability of
a physical state in a distinct state z. The common form of entropy is :

S ∼ −�Ei
pβ(Ei) log

[
pβ(Ei)

]
(6)

This definition of entropy is additive. For example a mixture of two systems A,B, the
probability is pβ(EA + EB), so the entropy of the numbers of the accession states of the
combined system reads as S(A + B) = S(A) + S(B). All these formulas derived from the
basic assumption of the probability as the exponential function.

But as we examine, in many important physical cases, especially for the black holes and
for the cosmological backgrounds, the gravitational entropy of the horizon is not an additive
function. It means we need to redefine the probability function. The appropriate form is not
so long valid as the exponential form but in the other generalized form, in the texts known
as the generalized exponential function. Inspired from the statistical physics, we defined the
q-exponential function eq(z) in the following form [66]:

eq(z) = �∞
n=0

zn

(q; q)n
= φ1;0

[
0| − 1; q; z

]
. (7)

Here the q-hypergeometric function is defined [67, 68]:

φr;s
[
α1, α2, ..., αr |β1, β2, ...βs; q; z

]
= �∞

n=0
�r

i=1(αi; q)n

�s
i=1(βi; q)n

× zn

(q; q)n

[
(−1)nqn(n−1)/2

]1+s−r

.(8)

Where (a; q)k is q-Pochhammer symbol as the following:

(a; q)k = �k−1
j=0(1 − aqj )θ(k) + δk,1 + �

|k|
j=1(1 − aq−j )−1θ(−k) + �∞

j=0(1 − aqj )δk,∞. (9)

here θ(x) is Heaviside step function and δi,j is the Kronecker delta. A more simplified form
of this exponential function,which is more convenient for us is as the following:

eq(z) =
[
1 + (q − 1)z

] 1
q−1

. (10)

Note that here limq→1 eq(z) = ez. It is the probability distribution function of a given
physical system, if we minimize the generalized entropy Sq(A) of the non-extensive
systems:

Sq(pi) = 1

q − 1

(
1 −

∑
i

p
q
i

)
,

∑
i

pi = 1. (11)

For non-extensive systems the generalized entropy satisfies the following non-additivity
condition(for a review see [69]:

Sq(A + B) = Sq(A) + Sq(B) + (1 − q)Sq(A)Sq(B), kB = 1. (12)

Let us to think on eHt as the scale factor of a de-Sitter Universe. Its exact solution of the
cosmological FLRW equations with cosmological constant,and without any other form of
matter fields:

H = H0, H ≡
˙a(t)

a(t)
. (13)
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Here a(t) is scale factor of a flat FLRW Universe with the following metric:

ds2 = −dt2 + a(t)2d �x2. (14)

A solution of cosmological equations with q-exponential function eq(Ht) is called as q-de
Sitter. The q-modified FLRW equations are given by the following:

3Hq(t)2 = κ2ρ, 2(
d

dt
)qHq(t) = −κ2(p + ρ). (15)

Here ( d
dt

)qf (t) ≡ f (qt)−f (t)
t (q−1)

, limq→1(
d
dt

)qf (t) = ḟ (t) . We use the same symbol as

Hq(t) ≡ H(t) = ( d
dt

)qa(t). q-de Sitter is an exact solution for case p = −ρ.
The extended de-Sitter scale factor a(t) = eq(Ht) has the limit of the commonly studied

de-Sitter when we set q = 1. But as we will study later, the cosmological implications of
such q-de-Sitter Universe is widely different. We remember the following basic properties
of the q-exponential function:

eq(z)e1/q(z) = 1, eq(z) = Eq(z(1 − q)), (16)

Eq(z) = φ1,0(0; q; z) = �∞
n=0

(
1 − zqn

)−1
.

We mention here that eq(z) to be considered as the gene function of the q-derivative operator
( d
dz

)q = Dq of a deformation of the commonly used derivatives:

Dqeq(z) = eq(z). (17)

In the following section we explore some cosmological aspects of q-de Sitter model.

3 q-de-Sitter Proposal for FLRW Cosmology

Our aim of this section is to investigate the cosmological behavior of q-de-Sitter family.
We will replace this kind of scale factor in the common forms of FLRW equations.1 From
now to the ending on this article,we use the following representation of the q-de-Sitter scale
factor for a flat FLRW metric:

a(t) = eq(H0t) =
[
1 + (q − 1)H0t

] 1
q−1

. (18)

We observe that in the limit of q → 1, this scale factor matches de Sitter form:

adS(t) = lim
q→1

[
1 + (q − 1)H0t

] 1
q−1 = eH0t . (19)

Furthermore, this type of scale factor interpolate between power-law and de Sitter,when we
study its form near the early times, H0t 	 1, we have:

aearly(t) ∼
[
H0t

] 1
q−1 = tp. (20)

To have acceleration expansion, p > 1, we should have q < 2. We conclude that:

aearly(t) 
 eq(H0t) 
 adS(t) (21)

1We assume that q-de-Sitter solves some kinds of cosmological equations with specific matter distributions.
An alternative form is to rewrite all the gravitational equations and FLRW equations in terms of q-derivatives.
This is a hard task and we omit it in our study.
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Inequality which is presented in (21) is one of the main reasons which we explore the
cosmological evolution with q-de Sitter. It is a good candidate to connect smoothly early
times to later times.

To be more precise, let us review the cosmological behavior of the (18). Think on a
finite interval in the cosmological epoch, nearly the inflation with time interval t ∈ [0, T ].
Consider a partionization of the interval to [0, T ] := ∪N

i=0[ti , ti+1], tN+1 = T . At each
interval Ii = [ti , ti+1] we assume that the scale factor is q-exponential eq(H0(ti+1 − ti )).
So, if we sum over all time intervals, we have a finite time q-exponential scale factor. We
mention here that in each interval Ii the cosmological evolution is not de-Sitter. But we
have a q-de-Sitter solution. It is more interesting for the case in which we study inflation
but without the de-Sitter scale factor.

Let us to investigate the cosmology of a flat FLRW universe , filled with a perfect fluid
with pressure p and energy density ρ. The FLRW equations are written as the following:

3H 2 = κ2ρ, (22)

2Ḣ = −κ2(ρ + p). (23)

Using the (18) give us:

H(t) = ȧ(t)

a(t)
= H0

1 + (q − 1)H0t
= H0

(
eq(H0t)

)q−1
(24)

The effective equation of state parameter w and deceleration parameter which we denote it
here by q̃ read as the following:

w = p

ρ
= −1

3
(1 + 2q) (25)

q̃ = −1 − Ḣ

H 2
= −q.

All symbols have the same meaning as the other cosmological models. Just we used q̃ for
the deceleration parameter to avoid of any confusion with the q factor. We observe that for
q → 1 we’ve the complete description of de-Sitter Universe:

H(t) = H0, (26)

w = p

ρ
= −1, (27)

q̃ = −1. (28)

It means that late time (de-Sitter) is considered as a limiting (asymptotic t → ∞) case. Our
scale factor contains this late time epoch in limiting case q → 1. But for q = 1, the fluid
mimics, either dark energy neither dark matter at the same time:

Dark matter :
(
w = 0

)
≡ a(t) = e−1/2(H0t), (29)

Dark energy :
(

− 1 < w < −1

3

)
≡ a(t) = e0<q<1(H0t). (30)

To have a well defined scale factor for dark matter, we need to suppose that |t | < 2
3H0

. As
we know the following quantity is called as e-folding is important:

N =
∫ tf =final time

ti=initial time
H(t)dt = ln

a(tf )

a(ti)
(31)

= 1

q − 1
ln

[
1 + (q − 1)H0t

]
|tfti ≡ lnq(H0t)|tfti .
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Here lnq(z) is the inverse function of the eq(z).

4 Single Scalar q-Inflaton

In the previous section we studied some cosmological consequences of a FLRW Universe
when time evolution is determined by the q - exponential form. One of the most important
cases which it deserves to be investigated separately, is inflation. An era of early Universe
which the time evolution is determined by de Sitter. We shall study our scenario of q-de
Sitter in a simple form.

The most simple and applicable inflationary scenario is composed of a single slow vary-
ing scalar field. The typical action of such models is given by the following (For a review
see [80]):

S =
∫

d4x
√−g

(
R

2κ2
− 1

2
∂μφ∂μφ − V (φ)

)
. (32)

Here V (φ) denotes scalar potential. We write field equations in the form of effective
quantities of a perfect fluid as the following:

ρ = 1

2
φ̇2 + V (φ) , P = 1

2
φ̇2 − V (φ) , (33)

where {P, ρ} are pressure and energy density of inflaton respectly. Effective FLRW
equations are written as follows:

H 2 = 8π

3m2
pl

[
1

2
φ̇2 + V (φ)

]
, (34)

φ̈ + 3Hφ̇ + Vφ(φ) = 0 , (35)

here Vφ ≡ dV/dφ.
To proceed inflation, we require that φ̇2V (φ). Classically it is equivalent that inflaton

should behave like a tunneling particle, since in the inflationary era, the inflaton potential
energy dominates over the kinetic energy. Consequently we need a flat (almost flat) potential
for inflation. A way to address this flat potential is to define a pair of slow-roll conditions
as the following:

φ̇2/2 � V (φ), |φ̈| � 3H |φ̇| (36)

We mention here that if we rewrite slow-roll conditions in terms of a dual f (R) grav-
ity, which is always available for a single scalar field, it leads to a second order corrected
Einstein-Hilbert action which it nearly remains of the one proposed by f (R) = R +
R2/(6M2) [1]. In slow-roll approximation effective FLRW (34) and (35) are given by the
following:

H 2 � 8πV (φ)

3m2
pl

, (37)

3Hφ̇ � −Vφ(φ) . (38)

Following literature, a pair of slow-roll parameters ε, η and ξ are written by the following :

ε ≡ 1

2κ2

(
V ′(φ)

V (φ)

)2

, η ≡ 1

κ2

V ′′(φ)

V (φ)
, ξ2 ≡ 1

κ4

V ′(φ)V ′′′(φ)

V (φ)2
. (39)
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Here V ′(φ) ≡ ∂V (φ)/∂φ. Perturbations of early times are needed to produce matter. One
effective quantitative parameter is the tensor-to-scalar ratio which is defined as

R = 16ε , (40)

and later the spectral index ns which it measures the primordial curvature fluctuations
and the corresponding running of the spectral index αs are given by:

ns − 1 ∼ −6ε + 2η , αs ≡ dns

d ln k
∼ 16εη − 24ε2 − 2ξ2 . (41)

One can show that under slow-roll conditions, always we’ve ε � 1, |η| � 1 and |ξ2| � 1.
Inflation must be ended when when ε, |η| and |ξ |2 ∼ 1, if this does not happen we shall
introduce a reheating mechanism in our system. We review the basic problems of inflation
and possible solutions to it. To solve the flatness problem, it is needed that the relative
density of inflation �f to be |�f − 1| � 10−60 . It should be exactly right after the end
of inflation. Meanwhile the ratio |� − 1| between the initial and final phase of slow-roll
inflation is given by

|�f − 1|
|�i − 1| �

(
ai

af

)2

= e−2Ni , (42)

We need to satisfy |�i − 1| ∼ 1 when N � 60 to solve the flatness problem.
An exact inflationary solution of equations (37, 38) for q-de Sitter scale factor (18) is

given by:

V (φ) = V0exp
[

∓ 2γφ
]
, (43)

where

V0 = 3m2
plH

2
0

8π
, γ =

√
4π(q − 1)

mpl

. (44)

Such exponential potential form proposed in literature [70–72]. For this exponential
potential, the set of low-roll parameters read:

ε ≡ 2γ 2

κ2
, η ≡ 2ε, ξ ≡ η. (45)

For our model, the tensor-to-scalar ratio is obtained as

R = 32γ 2

κ2
(46)

and the spectral index and the associated running of the spectral index are

ns − 1 ∼ −2ε, αs ≡ 0. (47)

We can easily verify that the above slow-roll approximations are valid when γ � κ√
2

.

The upper bound for this parameter is obtained by using WMAP9 and BICEP2 observa-
tional data, R < 0.36 [73–77] . For our model it gives us γ < 0.1060660172κ . So our
model is compatible with WMAP9 and BICEP2. In modified gravity also recently some
models which are compatible with BICEP2 have been investigated [78, 79]

To end the inflation, we should have 0 < q(= 3
4 ) < 1. We deduce that the inflation ends

when the evolution of the scale factor is a(t) = e3/4(t). With this scale factor these is no
specific φend . So, we are not able to find the ending value of inflaton. In the next section we
will propose another mechanism to solve this problem.



Int J Theor Phys (2016) 55:1003–1018 1011

5 Warm Inflation

Our q-inflation in the context of single scalar field model (32), leads to the exponential
potential (43). This form of potential cannot describe a complete inflationary theory. The
slow-roll parameter ε (45) is constant, so the slow-roll era of inflation never ends and extra
formalism is required to stop it. Exponential potential can not also fit well the observational
data [81]. Inflaton field interacting with thermalised radiation may be solved this problem.
This model is named ”warm inflation,” where dissipative effect is important during warm
inflation and radiation production occurs with the inflationary expansion. Idea of warm
inflation is phenomenologically explained by adding a friction term in the inflaton equation
of motion [82].

φ̈ + (3H + �)φ̇ + V,φ = 0 (48)

H(t) is the expansion rate and � is damping term. We introduce an important parameter

r = �

3H
(49)

which is the relative strength of the thermal damping compared to the expansion damping.
This parameter is much bigger than one for warm inflation and much lower than one for
cool inflation. Total energy density and pressure of warm inflation are modified

ρT = ρφ + ργ = 1

2
φ̇2 + V (φ) + ργ (50)

P = 1

2
φ̇2 − V (φ)

where ργ is energy density of radiation. When the early universe is in homogeneous
expansion the zero curvature Friedman equation is given by

3H 2 = 8πG(ρT ) = 8πG(
1

2
φ̇2 + V (φ) + ργ ) (51)

Equations (48) and (49) are important for our future calculations. Energy-momentum
conservation

ρ̇T + 3H(ρT + P) = 0 (52)

is phenomenologically considered by two equations [83]

ρ̇φ + 3H(ρφ + P) = −�φ̇2 (53)

ρ̇γ + 4H(ργ ) = �φ̇2

where �φ̇2, is friction term. The energy-momentum conservation of scalar field (first seg-
ment of the above equations) is equivalent to (48). In slow-roll limit, where the highest order
in time derivative is negligible, the above equations are simplified

φ̇ = − V,φ

3H(1 + r)
(54)

ργ = 3

4
rφ̇2

3H 2 = 8πGV

Note that ργ is the same order as two time derivatives so in Friedman equation we neglect
it. Slow-roll approximation is governed by using slow-roll parameters. Slow-roll parameters
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of warm inflation model in high dissipative regime are given by [84]

ε = − 1

H

d

dt
ln H = 1

16πGr
(
V,φ

V
)2 (55)

η = − 1

2H

d

dt
ln(ḢH�) = 1

8πGr
(
V,φφ

V
)

β = − 1

H

d

dt
(ln �) = 1

8πGr
(
�,φV,φ

�V
)

Perturbation parameters of the warm inflation model are obtained in Ref. [84]. Using these
parameters, we can constrain the q-inflation model with the observational data [10]. Power-
spectra, tensor to scalar ratio and spectral index of warm inflation are given by

P = (
π

4
)

1
2
H

5
2 �

1
2 T

φ̇2
(56)

R = 32G

�
1
2 π

3
2 T

φ̇2

H
1
2

ns − 1 = −9

4
ε + 3

2
η − 9

4
β

Warm inflation models are studied in two important cases: 1)� = �0 and 2)� = �(φ) =
�1V (φ) [61]. We will study q-inflation model in the context of warm inflation in these two
cases.

5.1 � = �0

Number of e-folds of q-inflation may be found using (26)

N =
∫ tf

ti

Hdt = ln(af ) − ln(ai) (57)

where ti is the initial time of slow-roll inflation where ε = 1. Note that, we assume the
system evolves in high dissipative regime i.e. � 	 3H, and � as a constant parameter.
Using (26) and (54), we obtain the inflaton field in term of time.

φ(t) = −(
3H0

πG�0(q − 1)
)

1
2

1

(1 + (q − 1)H0t)
1
2

(58)

Potential in term of scalar field has the following form

V (φ) = 3H 2
0

8πGα2
0

φ4 (59)

where α0 = 3H0
�0πG(1−q)

. The slow-roll parameters of the model in this case are given by

ε = (1 − q)2

α
q

0

φ2q (60)

η = (1 − q)(3 − 2q)

2α
q

0

φ2q

β = 0



Int J Theor Phys (2016) 55:1003–1018 1013

0 10 20 30 40 50 60 70

0.6

0.8

1.0

1.2

1.4

N

n s

Fig. 1 Spectral index ns in term of number of e-folds, from left to right: q = 1
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2 , q = 9
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Slow-roll inflation (ä > 0) occurs where ε < 1, from above equation this condition only
satisfied when φ2q < 2αq

(1−q)2 . The number of efolds is presented by

N = ln a|φ=φ − ln a|φi
= 1

1 − q
(ln φ2

i − ln φ2) (61)

We assume the slow-roll inflation begins at ε = 1, so the scalar field at this time becomes

φi = α
1
2
0

(1 − q)
1
q

(62)

From two above equations, inflaton in term of number of e-folds is presented by

φ2(N) = α0

(1 − q)
2
q

exp(−(1 − q)N) (63)

Using (56), we can find the perturbation parameters of the model. These parameters may
be related to observational data [10]. Using (54) and (56) we present the power-spectrum in
term of scalar field.

PR = 3H 3
0 (1 − q)

4πGα3
0

φ6 (64)

Spectral index is given by

ns(φ) = 1 + q(1 − q)

2α
q

0

φ2q (65)

ns(N) = 1 + q

2(1 − q)
exp(−(1 − q)N)

Figure 1 shows the scale invariant spectrum, (Harrison-Zeldovich spectrum, i.e. ns = 1)
may be approximately presented by (q = 9

10 , N = 70). Tensor-scalar ratio in term of
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scalar field and spectral index are given by

R(φ) = 24GH
5
2

0 (1 − q)

�
1
2
0 π

3
2 T α

5
2
0

φ7 (66)

R(ns) = 24GH
5
2

0 (1 − q)

�
1
2
0 π

3
2 T α

5
2
0

(
2αq

q(1 − q)
)

7
2q (1 − ns)

7
2q

In Fig. 2, three trajectories in the ns − R plane are shown. There is a range of values of
R and ns which is compatible with the BICEP2 data where q = 9

10 .

5.2 � = �1V (φ)

Dissipative coefficient may be considered as a function of inflaton field φ [61]. Using (26)
and (54), we present the inflaton field in this case.

φ = α1(1 + (1 − q)H0t)
1
2 (67)

where α1 = ( 8
�1(1−q)H0

)
1
2 . Potential of the model in term of scalar field has the following

form

V (φ) = 3H 2
0 α4

1

8πG

1

φ4
(68)

We also present the slow-roll parameters in this case

ε = (1 − q)2α
2q

1

φ2q
(69)

β = 2(1 − q) (70)

η = α
2q

1 (1 − q)(3 − 2q)

2φ2q
+ β

2
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Using above equation we can find the initial scalar field where ε = 1

φi = α1(1 − q)
1
q (71)

The scalar field in term of number of e-folds is presented from (57) and (71)

φ2(N) = α2
1(1 − q)

2
q exp(−(1 − q)N) (72)

Perturbation parameters of warm q-inflation, in this case, could help us to constrain the
model with observational data. Power-spectrum is presented by using the above equations

PR = 3T 2α5

32G(1 − q)2H 2
0

1

φ
5
2

(73)

Spectral index in term of inflaton and number of e-folds has the following form

ns − 1 = 3(1 − q)qα
2q

1

4φ2q
+ 3(1 − q) (74)

� 3

4
q exp(−q(1 − q)N)

In Fig. 3, the dependence of spectral index on the number of e-folds of inflation is shown
(for q = 1

10 , q = 1
2 and 9

10 cases). It is observed that small values of number of e-folds are
assured for small values of q parameter. The scale-invariant spectrum (Harrison-Zeldovich
spectrum, i.e. ns = 1) may be presented by (q,N) = ( 9

10 , 70). Tensor-scalar ratio in this
case is given by

R = A

φ
(75)

= A(
4(1 − ns)

3q(1 − q)α
2q

1

)
1

2q

where A = 128
√

2G
3
2 (1−q)α1√

3(H0�1)
3
2 πT

.
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In Fig. 4, three trajectories in the ns − R plane are shown. For q = 9
10 a range of values

of R and ns is compatible with the BICEP2 data.

6 Conclusion

In this article, we have proposed a novel inflationary mechanism driven by a family of non
extensive de Sitter scale factors. Such scale factors belongs to a wide family of statistical
functions, is called as q-generalized functions. Our model -q de Sitter- is a new class of
cosmological solutions driven by an intermediate scale factor. Our model of inflation, q-de
Sitter inflation opens a new bridge between non extensive systems and cosmology. We show
that this scale factor gives rise to a unified scenario of dark energy and dark matter. The
single inflaton scenario is investigated. A constant ratio R is obtained. It has been proven
that the model is compatible with observational data. But such single inflaton scenario with
exponential potential has no ending point. To end inflation, we also study warm inflation
with two forms of damping factors. In each case, we show that inflationary model has exact
solutions for inflaton and interaction potential. We show that for specific values of non
extensively parameter q, a range of values of R and ns is compatible with the BICEP2 data.
This is the first work in which the non extensive statistical assumptions are described.
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