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Using CRISPR cas-9 to treat cancer: A Review
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Abstract

CRISPR-Cas9 technology has rapidly emerged as a versatile tool in genetic engineering,
offering precise gene editing capabilities with unprecedented accuracy and efficiency. Originally
discovered as a microbial defense mechanism(1), CRISPR-Cas9 has been ingeniously
repurposed by scientists to target and modify specific genes within the human genome. This
groundbreaking technology holds immense promise in significantly impacting cancer treatment
by enabling the selective editing of genes associated with tumorigenesis and drug resistance,
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potentially leading to more effective therapeutic interventions. In this article, we provide a
comprehensive review of the current landscape of CRISPR-Cas9 applications in cancer research
and treatment, highlighting its transformative potential in combating this formidable disease (2)

Introduction

Cancer is a devastating disease that claims the lives of millions of people each year.
According to the World Health Organization cancer is the second leading cause of mortality in
the world responsible for an estimated ten million deaths in 2020(3). At the same time, the
treatment is also improving by using various genetic engineering methods such as modifying T-
killer cells to enhance their ability to fight against cancer better. Traditional cancer treatments,
like surgery to remove tumors, often lack specificity and come with side effects. Consequently,
contemporary oncology is prioritizing the development of therapies that are more targeted and
safer. (4,5) This shift has led to the emergence of other techniques. Furthermore, the advent of
precise gene editing tools represents a milestone, opening doors to treatment modalities that can
directly target the genes driving the uncontrolled growth and survival of cancer cells. But curing
cancer is challenging due to the complex mechanisms and because of the diversity of cancer
types and their ability to adapt to any environment it is hard to detect mutated genes and finding
a universal cure is still impossible.(6) But CRISPR (Clustered Regularly Interspaced Short
Palindromic Repeats), first discovered in E. coli in 1987, fundamentally changed our
understanding of DNA and cancer therapy. Unlike other genetic engineering techniques, the use
of CRISPR-Cas9 has improved throughout the years. With its unparalleled precision, CRISPR-
Cas9 holds the potential to revolutionize cancer therapy by enabling targeted gene editing to
eradicate cancerous cells while sparing healthy tissue(7). Because of the specificity and efficacy
CRISPR-Cas9 become a significant advancement in biochemistry. In this article, we will review
CRISPR-Cas9 and its applications in cancer therapy and research also basic mechanisms of this
technique

Mechanisms of CRISPR

For centuries we did not know about how short repeat sequences work. But in 2005
scientists found out that these sequences are part of an immune system in bacteria(8). Thus, they
concluded that this CRISPR/Cas9 technology originated from a fascinating immune defense
mechanism observed in bacteria and archaea, providing them with protection against invading
nucleic acids like viruses and phages. This system, known as Clustered Regularly Interspaced
Short Palindromic Repeats (CRISPR) along with the Cas9 enzyme, has gained significant
attention in genetic engineering. Typically, CRISPR/Cas systems are classified into three main
types, each comprising various subgroups. Among these, the type II CRISPR/Cas system is most
employed for gene editing. It consists of three key components: Cas9, CRISPR RNA (crRNA),
and transactivating ctrRNA (tractRNA). The crRNA and tracrRNA molecules join to form a
duplex structure called guide RNA (gRNA)(9). To streamline the process of genome
engineering, this gRNA can be replaced by a synthetic fused chimeric single gRNA (sgRNA),
making CRISPR/Cas9 technology more user-friendly and accessible. In the realm of genetic
engineering, the single guide RNA (sgRNA) plays a pivotal role(10). Crafted with precision, it
boasts a distinctive twenty base-pair (bp) sequence meticulously tailored to complement the
target DNA site. For compatibility with the Cas9 protein, the sequence must be followed by a
concise DNA segment called “protospacer-adjacent motif” (PAM) which is a short DNA
sequence, usually 2 to 6 nucleotides, located near the target DNA sequence that Cas9 needs to
cut. Upon expression within the cell, the sgRNA joins forces with the Cas9 nuclease, forming a
formidable ribonucleoprotein (RNP) complex(11). Guided by the sgRNA, this dynamic duo
navigates to the designated target DNA site with remarkable accuracy. The incision, occurring
within the protospacer, occurs with surgical precision, precisely three nucleotides upstream of
the PAM, yielding blunt ends. Facilitated by the RuvC and HNH active-site motifs of Cas9, this
cleavage simultaneously targets both the (—) and (+) DNA strands. Subsequently, the cell's repair
machinery springs into action, using one of two primary mechanisms—homology-directed repair
(HDR) or non-homologous end joining (NHEJ). Homology-directed repair (HDR): This process
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uses a donor DNA template to accurately repair the DNA double-strand break (DSB)(12). It is
used for precise genome editing, such as introducing specific sequences or mutations. Non-
homologous end joining (NHEJ): This mechanism is more common but less precise. It tends to
insert or delete nucleotides at the DSB site, often causing frameshift mutations. It is useful for
inducing gene knockouts. Also, this kind of mutation can be dangerous because of the
randomness of the repair mechanism(12,13).

Overall, CRISPR/Cas9 holds a big promise in the field of genetic engineering. It is much
easier to use, and design compared to older methods (ZFNs and TALENSs)(14). Traditional
methods rely on engineering proteins for each target gene. But CRISPR/Cas9 uses sgRNA
instead. The RNA acts like a search term, providing Cas protein with the right spot in the
DNA.Cas9 then makes a clean-cut at that location. Allowing scientists to introduce precise
changes.

Cas9 le:
Repair Mechanism
NHEJ HDR
Insertion or deletion of part of the DNAl Using donor DN%[D:D%

Fig 1. Two possible pathways for repairing a double-strand break in DNA: non-
homologous end joining (NHEJ) and homology-directed repair (HDR).

CRISPR/Cas9 in cancer therapy

Finding a cure for cancer is still a complex problem. Despite improvements, there are still
obstacles to overcome before CRISPR-Cas9 can be widely adopted in cancer therapy. One major
challenge is delivering the CRISPR-Cas9 system accurately and efficiently into the target cells.
In the context of cancer therapy, CRISPR-Cas9 offers diverse benefits. One important use is its
potential to disable or change oncogenes, which are genes that promote cancer growth(15). By
targeting and modifying these genes, CRISPR-Cas9 has the potential to slow down or even halt
tumor growth. Earlier gene editing tools like TALENs and ZFNs were used for cancer treatment,
but they may not have been as specific in targeting the exact epigenetic modifications associated
with the disease(16). However, there has been a significant advancement in the field of
immunology. Scientists introduced genetically engineered T-killer cells which are called CAR-T
cells. Using the strength of the patient's own immune system, CAR T-cell therapy is a ground-
breaking method of treating cancer. The creation of chimeric antigen receptors (CARs) is crucial
to this therapy(17). Chimeric antigen receptors (CARs) are the workhorses of CAR T-cell
therapy. They are engineered proteins that combine functionalities from various parts of the
immune system to give T cells the ability to recognize and target specific cancer cells(18). CAR-
T cell therapy has shown great promise in treating blood cancers due to the ability of cancer cells
to move freely throughout the bloodstream(5). However, solid tumors pose a challenge to
therapy as the dense tumor microenvironment can prevent CAR-T cells from reaching all cancer
cells(19) (20) Developing effective CAR-T cells targeting all cancer cells is a complex task due
to the wide range of surface proteins in solid tumors(21). CAR T-cell therapies can sometimes
lead to a condition called T-cell exhaustion, where the modified T cells gradually lose their
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effectiveness over time(22). Additionally, these engineered T cells may not remain in the body
for an extended period, which can limit their long-term impact on cancer treatment. But, with the
help of CRISPR/Cas9, we can modify these CAR-T cells to be more persistent and potent(23).
We can use CRISPR-Cas9 to eliminate genes that make CAR T cells less effective, such as
genes that cause T-cell exhaustion, or insert genes that make CAR T cells more effective, such as
genes that help them to survive and multiply. CRISPR can target genes like PD-1 or CTLA-4,
which function as brakes on the immune system, allowing CAR T cells to function for longer
periods (24).

Scientists can use CRISPR to modify an animal's genome, including inserting, deleting,
or changing specific genes. GEMMs (Genetically Engineered Mouse Models) are a valuable tool
in cancer research because they allow scientists to study the development and progression of
cancer in a living organism. By creating mice with mutations that are known to cause cancer in
humans, researchers can gain insights into the biology of cancer and test potential new
therapies(25).

Conclusion
CRISPR-Cas9 technology has emerged as a revolutionary tool with immense potential for cancer
treatment. Its exceptional precision allows for targeted editing of genes associated with
tumorigenesis and drug resistance, paving the way for more effective therapeutic interventions.
While challenges remain in delivery methods and ensuring long-term efficacy, the ongoing
advancements in CRISPR-Cas9, particularly its use in engineering CAR-T cells, offer a ray of
hope for a future with more successful and personalized cancer therapies. However, it is crucial
to acknowledge the ethical considerations surrounding this powerful technology as we move
forward in its development and application.
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Wkconua keHenepi y3aK yakbIT KOPEKTEHETIH yaKbITIIA SKTOMAPA3UTTEPIIH SKOIOTUSIIBIK
TOOBIHA >kaTazbl [1], COHIBIKTaH OMIpIIIK UK WKCOAWI TOPT KE3CHHEH TYpPajIbl: )KYMBIPTKA,
TUYMHKa, HUM(a XoHe uMmaro. JlmumHkamap MeH HuMdanapaa KaHMEH KaHbIKKAaHHAH KeHiH
0anKy maiiia 6oiajbl, ajl epeceK aHAJIBIKTap KaHHBIH KOIl MOJILIEpiH illell, oJapAblH Maccachl
OipHeliie ece apTabl.

XKepaeri aprponoaTapAbIH Mapa3sUTTeHy TYpJepiH 3epTrey Oapbichinaa B. H. bexnemuies
(1970) Typaiy TipIIiIiK cXeMachl Typaibl TY>KbIpbIMIama xacajsl [2].

CoHFBICHI TYPAIH OMIpIIK IMKIIiH, UECIHIH JI€HECIMEH Je, KOpIIaraH OpTaMeH Ji¢ KapbIM-
KaTBIHACTAFbI OAPIIBIK KE€3EHAEPIHIH ePEKIIETIKTePiH KaMTHIbI.

Keiiinnen 1O. C. banamos Oy iKTeyli Mapa3uTTIK-Ue KAaThIHACTAP HETi31HJe KEeHEHTTI

[3].
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