УДК 539.173.3 ВКЛАД КЛАСТЕРНЫХ КАНАЛОВ В ЯДРЕ ⁹ВЕ ПРИ ПРОЦЕССАХ ТЕРМОЯДЕРНОГО СИНТЕЗА

Баяхметов О.С., Сексембаев Ж.Б.

<u>olzhik1992@mail.ru</u> Докторант 2 курса ЕНУ им. Л.Н.Гумилева, Нур-Султан, Казахстан Научные руководитель – Сахиев С.К.

Введение

Ядро ⁹Ве широко известно своими приложениями в различных областях ядерной, атомной физики, а также в физике плазмы. Например, оно представляет собой эффективный источник нейтронов [1], применяющийся в ядерных реакциях и процессах термоядерного синтеза [2]. В настоящее время очень актуальным является изучение взаимодействия *α*-частиц, нуклонов, гамма-квантов и электронов с ядром ⁹Ве для разнообразных приложений, в частности для решения проблемы управляемого термоядерного синтеза и в атомной цилиндрической капсулы, содержащей термоядерное топливо D-³He [2]. Кроме того, бериллий представляет собой высокоэффективный поглотитель и замедлитель нейтронов. В целом, касательно процессов термоядерного синтеза стоит выделить два основных процесса: взаимодействие протонов с ядром ⁹Ве с последующими термоядерными реакциями, а также процесс фоторасщепления ⁹Ве, позволяющий получать потоки низкоэнергетических альфачастиц и нейтронов.

Процесс взаимодействия *p*+⁹Ве имеет два практически равновероятных экзотермических канала получения медленных заряженных частиц [3],

$$p + {}^{9}\text{Be} \rightarrow {}^{4}\text{He} + {}^{6}\text{Li} + 2.13 \text{ M} \Rightarrow \text{B}, \tag{1}$$

$$p + {}^{9}\text{Be} \rightarrow 2^{4}\text{He} + D + 0.65 \text{ M}\Im\text{B}$$
⁽²⁾

которые могут передавать большую часть своей энергии ионам плазмы. Несмотря на общее выделение энергии (около 2.8 МэВ), наблюдается низкоэнергетическое поведение реакции, связанное с наличием сильного резонанса при энергии падающего протона $E_p \sim 330$ кэВ, что соответствует возбужденному состоянию ¹⁰В (1⁻) при $E^* \sim 6.88$ МэВ. В этой области энергий сечения реакции очень большие, а величина средней реактивности $\langle \sigma v \rangle$ превышает показатели для процессов D+³He. Большие значения низкоэнергетических сечений могут быть скрыты в структурных особенностях ядра ⁹Be. Это ядро имеет нейтрон, слабо связанный с ядром ⁸Be, энергия разделения которого составляет 1.68 МэВ.

В свою очередь, продукты реакций (1) и (2) вызывают экзотермические процессы второго поколения:

 $D + {}^{9}Be \rightarrow 4$ реакции с полным выходом реакции $Q \sim 21$ МэВ, (3)

⁶Li + ⁹Be
$$\rightarrow$$
 8 реакций с $Q \approx 2-15$ МэВ, (4)

$${}^{4}\text{He} + {}^{9}\text{Be} \to n + {}^{12}\text{C} + 5.70 \text{ M} \Im \text{B}, \tag{5}$$

$${}^{6}\text{Li} + \text{H} \rightarrow {}^{3}\text{He} + {}^{4}\text{He} + 4.02 \text{ M} \Rightarrow \text{B}.$$
(6)

Роль данных реакций также может быть значительной при нагреве плазмы [3].

Нуклеосинтез тяжелых элементов во взрывоопасных средах предположительно происходит через трехтельную $a(an, \gamma)^9$ Ве реакцию с последующей реакцией ${}^9\text{Be}(a, n)^{12}\text{C}$ [4]. Трехтельная реакция $a(an, \gamma)^9$ Ве представляет собой процесс, состоящий из двух этапов $a+a = {}^8\text{Be}$ с последующей реакцией ${}^8\text{Be}(n, \gamma)^9\text{Be}$. Таким образом, ${}^8\text{Be}(n, \gamma)^9\text{Be}$ является ключевой реакцией, преодолевающей разрыв массового числа A = 8 для продвижения нуклеосинтеза средних и тяжелых элементов в средах, богатых альфа-частицами и нейтронами. В свою очередь, процесс $a(an, \gamma)^9\text{Be}(a, n)^{12}\text{C}$ обеспечивает мост между элементами с массовыми числами A = 5 и A = 8 и протекает быстрее, чем тройной *a*-процесс. Сечение для первой реакции выводится из сечения реакции фоторасщепления $\gamma + {}^9\text{Be}$, которое было измерено различными методами несколькими научными группами [5–11]. При низких энергиях считается, что поперечное сечение по существу, определяется свойствами резонанса возбужденного состояния $1/2^+$, расположенного близко к порогу a+a+n в ${}^9\text{Be}$. В этом энергетическом режиме канал разрыва ${}^8\text{Be}+n$ обеспечивает основной вклад, но канал ${}^5\text{He}+a$ может быть значительным при более высоких энергиях.

Теория фоторасщепления ⁹Ве

Фотоделение ядра ⁹Ве в кластерной модели может происходить в двух каналах: ⁸Ве+*n* с последующим распадом ядра ⁸Ве (время жизни составляет $\tau \approx 10^{-16}$ с) на $\alpha + \alpha$, и ⁵Не+ α с последующим распадом ⁵Не на $\alpha + n$. Хотя второй процесс, как правило, считается незначительным, его влияние в области энергий $E_{\gamma} > 4$ МэВ было теоретически проанализировано и доказано в работе [12].

Теоретический R-матричный анализ процесса фоторасщепления ядра ⁹Ве был проведен в работе Баркера [13], в которой свойства резонанса возбужденного состояния $1/2^+$ определены при помощи данных по дифференциальным сечениям γ^{+9} Ве. В свою очередь, теоретическое исследование Эфроса и др. [14] стремится к согласованию данных с потенциальной моделью в ограниченном диапазоне энергий ($Q \leq E_{\gamma} \leq 2.2$ MeV), где Q представляет собой порог реакции (1.66 МэВ).

Для мультипольного перехода порядка λ , сечение фоторасщепления в парциальных волнах $J\pi$ в канале *i* (⁸Be+*n* или ⁵He+ α) представляется в виде:

$$\sigma_{l}^{J}(E_{\gamma}) = \frac{8\pi(\lambda+1)}{\hbar\lambda(2\lambda+1)!!\,2} k^{2}k_{\gamma}^{2\lambda-1} \sum_{ll} \frac{4}{(2l+1)(2l+1)} \left| \left\langle \psi({}_{0}^{9}Be) \right| \left| \dot{M}_{\lambda} \right| \left| \psi_{lll}^{J\pi}(E) \right\rangle \right|^{2}, \tag{7}$$

где E – энергия канала i, E_{γ} – энергия фотона (гамма-кванта), \hat{M}_{λ} – оператор мультипольного перехода, $\psi({}_{0}^{9}Be)$ – полная волновая функция ядра 9 Be, $\psi_{ill}^{J\pi}(E)$ – парциальная волна функции рассеяния единичного потока в канале i, k и k_{γ} – волновые векторы.

Полное сечение фоторасщепления определяется суммированием по всем каналам реакции и спинам:

$$\sigma(E_{\gamma}) = \sum_{i,J} \sigma_i^J(E_{\gamma}). \tag{8}$$

Экспериментальные исследования фоторасщепления ядра ⁹Ве

Изначально, для измерения полных сечений фоторасщепления ядра ⁹Ве использовались два типа реальных фотонных источников: источники тормозного излучения и радиоактивные изотопы. В научной работе [15] применялись пучки фотонов, полученные методом обратного комптоновского рассеяния гамма-квантов. Для измерения сечения фоторасщепления ядра ⁹Ве были использованы высокоэффективные нейтронные детекторы с двумя круглыми концентрическими решетками из трубок ³Не, которые предоставляли информацию о распределении энергии регистрируемых нейтронов. Для калибровки эффективности нейтронного детектора были применены хорошо известные и исследованные результаты сечений реакции ²H(γ , n)p, а также точное измерение потока и распределения энергии налетающих гамма-квантов. С другой стороны, обратное комптоновское рассеяние фотонов было применено и в работе [6].

Результаты теоретически рассчитанных и экспериментально измеренных полных сечений фоторасщепления ядра ⁹Ве в области низколежащих возбужденных уровней энергии вплоть до 6 МэВ представлены на рисунке 1:

Рисунок 1 – Сечение фоторасщепления ядра ⁹Ве при низких энергиях гамма-квантов. Синяя пунктирная линия соответствует теоретической работе [5], белые точки – экспериментальной работе [6], черные точки – экспериментальной работе [15]

Из рисунка 1 наглядно наблюдается хорошее согласование теоретических и экспериментальных данных по полным сечениям фоторасщепления ядра ⁹Ве в области его низколежащих возбужденных уровней $1/2^+$ (1.665 МэВ), $5/2^+$ (3.04 МэВ), что соответствует мультипольным переходам Е1. Также, в теоретических результатах четко фиксируется максимум сечения в области возбужденного состояния $5/2^-$ (2.44 МэВ), соответствующему магнитному переходу М1.

Спектроскопические наблюдаемые ядра ⁹Ве

Спектр низколежащих возбужденных уровней ядра ⁹Ве представлен в **таблице 1** для различных каналов: ⁸Ве+n, ⁵Не+ α [16], а также для посчитанного нами трехтельного канала $\alpha + \alpha + n$ в двух моделях в зависимости от выбора потенциала $\alpha \alpha$ -взаимодействия. В модели 1 использован потенциал Али-Бодмера (АВ-потенциал), а в модели 2 – Бака-Фридриха-Уитли (BFW-потенциал).

Таблица 1

Спектр пизколежащих состоянии ядра Вс							
Состояние			Энергия [МэВ]				
	⁸ Be+ n	5 He+ α	Модель 1 (АВ-	Модель 2 (BFW-			
	[16]	[16]	потенциал)	потенциал)			
1/2+	1.66	2.05	1.67	1.63			
5/2-	2.42	2.37	2.42	2.38			
5/2+	3.05	2.82	3.02	2.98			

Спектр низколежащих состояний ядра ⁹Ве

Для проверки полученного спектра энергий ядра ⁹Ве были рассчитаны статические наблюдаемые для основного состояния данного ядра. Результаты статических наблюдаемых представлены в таблице 2:

Таблица 2

Модели	$\langle r_{ch}^2 angle^{1/2} \left[\phi_{\mathrm{M}} \right]$	μ [я.м.]	<i>Q</i> [мб]	$arOmega$ [я.м.·фм 2]			
<i>2</i> α+ <i>n</i> модель 1	2.560	-0.780	52.5	-6.25			
$2\alpha+n$ модель 2	2.354	-0.931	37.7	-4.52			
Эксперимент [16]	2.519	-1.1778	53±3	6±2			

Статические наблюдаемые ядра ⁹Ве в основном состоянии

В целом, обе 2α+n модели описывают статические наблюдаемые ядра ⁹Ве с достаточно хорошей точностью. В свою очередь, электрические свойства (среднеквадратичный зарядовый радиус, квадрупольный момент) хорошо согласуются с экспериментальными данными в модели 1, тогда как магнитные – в модели 2.

Заключение

Таким образом, в настоящей работе проанализированы теоретические и экспериментальные исследования статических и динамических свойств ядра ⁹Ве, играющих огромную роль при процессах нуклеосинтеза средних и тяжелых ядер, а также при решении проблем управляемого термоядерного синтеза. В частности, исследованы электромагнитные свойства и реакция фоторасщепления ядра ⁹Ве в различных каналах при относительно низких энергиях возбуждения.

Список использованных источников

1. Scherzinger J., Annand J., Davatz G. et al., Applied Radiation and Isotopes. -2015. -Vol. 98. - P. 78.

2. Voronchev V.T., Kukulin V.I. Phys. Atom. Nucl. - 2010. -Vol. 73. -P. 1.

3. Voronchev V.T., Kukulin V.I. Phys. Atom. Nucl. - 2000. - Vol.63. - P.12.

4. Woosley S.E., Hoffman R.D. Astrophys. J. - 1992. - Vol. 395. -P. 202.

5. Kikuchi Y., Odsuren M., Myo T., Kato K. Phys. Rev. C. - 2016. - Vol. 93. -P. 5.

6. Utsunomiya H., Yonezawa Y et al. Phys. Rev. C. -2001. - Vol. 63. - P. 018801.

7. Gibbons J.H., Macklin R.L., Marion J.B., Schmitt H.W. Phys. Rev. -1959. - Vol. 114. -

P.1319.

8. Jakobson M.K. Phys. Rev. - 1961. - Vol. 123. - P. 229.

9. John W., Prosser J.M, Phys. Rev. - 1962. - Vol.127. - P. 231.

10. Fujishiro M., Okamoto K., Tsujimoto T., Can. J. Phys. -1983. - Vol. 61. -P.1579.

11. Goryachev A.M., Zalesny G.N, Pozdnev I. Izv. RAN, Ser. Fiz.-1992. - Vol. 56. -P. 159.

12. Descouvemont P. Eur. Phys. J. A . - 2001. - Vol.12.- P. 413.

13.Barker F.C., Aust. J. Phys. - 1984.- Vol. 37. - P. 267.

14.Efros V.D., Oberhummer H., Pushkin A.Eur. Phys. J. A. 1998. -Vol. 1. - 447.

15. Arnold C.W., Clegg T.B, Iliadis C. et al., Phys. Rev. C. 2012. Vol.- 85.- 044605.

16. Tilley D.R., Kelley J.H. et al., Nucl. Phys. A. -2004. -Vol. 745. -P. 218.