

Студенттер мен жас ғалымдардың «**ҒЫЛЫМ ЖӘНЕ БІЛІМ - 2018»** XIII Халықаралық ғылыми конференциясы

СБОРНИК МАТЕРИАЛОВ

XIII Международная научная конференция студентов и молодых ученых «НАУКА И ОБРАЗОВАНИЕ - 2018»

The XIII International Scientific Conference for Students and Young Scientists **«SCIENCE AND EDUCATION - 2018»**

12thApril 2018, Astana

ҚАЗАҚСТАН РЕСПУБЛИКАСЫ БІЛІМ ЖӘНЕ ҒЫЛЫМ МИНИСТРЛІГІ Л.Н. ГУМИЛЕВ АТЫНДАҒЫ ЕУРАЗИЯ ҰЛТТЫҚ УНИВЕРСИТЕТІ

Студенттер мен жас ғалымдардың «Ғылым және білім - 2018» атты XIII Халықаралық ғылыми конференциясының БАЯНДАМАЛАР ЖИНАҒЫ

СБОРНИК МАТЕРИАЛОВ XIII Международной научной конференции студентов и молодых ученых «Наука и образование - 2018»

PROCEEDINGS of the XIII International Scientific Conference for students and young scholars «Science and education - 2018»

2018 жыл 12 сәуір

Астана

УДК 378 ББК 74.58 F 96

F 96

«Ғылым және білім – 2018» атты студенттер мен жас ғалымдардың XIII Халықаралық ғылыми конференциясы = XIII Международная научная конференция студентов и молодых ученых «Наука и образование - 2018» = The XIII International Scientific Conference for students and young scholars «Science and education - 2018». – Астана: <u>http://www.enu.kz/ru/nauka/nauka-i-obrazovanie/</u>, 2018. – 7513 стр. (қазақша, орысша, ағылшынша).

ISBN 978-9965-31-997-6

Жинаққа студенттердің, магистранттардың, докторанттардың және жас ғалымдардың жаратылыстану-техникалық және гуманитарлық ғылымдардың өзекті мәселелері бойынша баяндамалары енгізілген.

The proceedings are the papers of students, undergraduates, doctoral students and young researchers on topical issues of natural and technical sciences and humanities.

В сборник вошли доклады студентов, магистрантов, докторантов и молодых ученых по актуальным вопросам естественно-технических и гуманитарных наук.

УДК 378 ББК 74.58

ISBN 978-9965-31-997-6

©Л.Н. Гумилев атындағы Еуразия ұлттық университеті, 2018

УДК.531.02. СОЗДАНИЕ НАНОКРИСТАЛОВ ОКСИДА ЦИНКА В ТРЕКОВЫХ ТЕМПЛЭЙАХ

Мурзагалиев Максат Маратович¹, Журкин Ернар Балтабаевич², Наурызбаева Рамина Шабазовна², Сейтбаев Айбек Самигуллаулы³

¹Магистрант 2 курса, ЕНУ им. Л.Н. Гумилева, Астана, Казахстан ²Студент 4 курса ЕНУ им. Л.Н. Гумилева, Астана, Казахстан ³Докторант 1 курса ЕНУ им. Л.Н. Гумилева, Астана, Казахстан Научный руководитель – А. Даулетбекова, Ш. Гиниятова

Введение

В настоящее время, *a*-SiO₂/Si нанопористый темплэйт представляет интерес для нанотехнологических применений. Одним из наиболее возможных методов создания *a*-SiO₂/Si нанопористых темплэйтов, является облучение быстрыми тяжелыми ионами (БТИ), комбинируемый с последующим травлением треков в селективных травителях. Условия облучения для получения травимых треков в аморфных тонких пленках a-SiO₂ на Si подложке исследованы в [1-5].

Облучение БТИ и травление ведет к формированию трековых темплэйтов SiO₂ /Si с контролируемой плотностью нанопор, формой и размерами от 10 нм до нескольких микрометров. Ряды наноканалов, вытравленных в местах латентных треков можно заполнить различными веществами. Нанопористый SiO₂ /Si может найти применение как темплэйт для создания металлических и полупроводниковых нанокластеров и нанопроволок для разработки устройств наноэлектроники [5, 6], в производстве активных элементов биосенсоров [7, 8]. В [9] предлагается использование структуры Si/SiO₂/Ni как основной элемент высокочувствительных сенсоров в области низких температур. В [10] были созданы системы n-Si/SiO₂ (Cu/Ni) методом электрохимического осаждения меди и никеля в трековый темплэйт. Слои металлов меди и никеля осаждены, как чередующиеся – 10 слоев по 20 нм в толщину каждый. Были исследованы электрические и гальваномагнитные свойства при различных температурах. Si/SiO₂(Cu/Ni) структуры могут быть использованы как новые чувствительные элементы для сенсоров магнитного поля.

С помощью трековой технологии были выращены самоорганизующиеся наноструктуры серебра в темплэйте Si/SiO₂ [11]. Установлено, что серебряные наноструктуры могут действовать как эффективные поверхности для поверхностного усиления Рамановской спектроскопии также для био-сенсорных применений.

Другим возможным применением является транспортировка ионного пучка при разработке новых оптических систем, базирующихся на взаимодействии заряженных частиц или квантов с внутренней поверхностью стенки (стенок) капилляров [12], а также разработка трековых мембран нового поколения с повешенной термической и химической стойкостью. Мы видим интересные возможности применения материалов, базирующихся на трековых темплэйтах SiO₂ /Si, поэтому так важно расширить круг материалов, вводимых в нанопоры.

Статья посвящена исследованию нанокластеров, полученных при электрохимическом осаждении в трековые темплэйт *a*-SiO₂/Si – n.

Экспериментальная техника

Структура a-SiO₂/Si-n изготавливалась термическим оксидированием кремниевой подложки (Si –n типа) в атмосфере влажного кислорода при 900 °C. Толщина оксидного слоя по данным эллипсометрии составляла 700 нм. Образцы облучались на ускорителе DC-60 ионами ксенона с энергией 200 МэВ, до флюенса 10⁸ ионов/см².

Химическое травление образцов SiO₂/Si в 1% HF, m(Pd)=0,025 г, $18^{\circ}\pm1C$.. Перед травлением треков проводилась ультразвуковая очистка поверхности образцов в изопропаноле в течение 15 минут в ультразвуковом очистителе 6.SB25-12DTS. Очиститель на двух частотах (25kHz/40kHz), обеспечивает интенсивную очистку поверхности образцов.

Диапазон регулирования (комнатная температура) – 80⁰ С. После обработки в НF образцы промывлисьв деионизованной воде (18,2 МОм). Анализ нанопор после травления проводился на сканирующем электронном микроскопе JSM-7500F.

Электрохимическое осаждение Zn в темплэйт Si/SiO₂ проводили в потенциостатическом режиме при диапазоне напряжений (1,5-1.85) В, и pH=3. Состав электролита: ZnSO₄·7H₂O - 360 г/л; NH₄Cl - 30 г/л; 3H₂O·CH₃COONa - 15 г/л; аскорбиновая кислота - 120 г/л. Контроль уровня pH для предотвращения образования водорода в процессе осаждения, который препятствует заполнению пор, поддерживали добавлением раствора аскорбиновой кислоты. Время осаждения – 10-20 минут.

Следует отметиь, что ЭХО успешно применялось при осаждении меди, никеля, серебра в трековые темплэйты SiO₂/Si [8 – 10]. ЭХО широко используется при осаждении различных веществ в полимерные мембраны [15-17].

Поверхность исследовалась сканирующим электронным микроскопом JSM 7500F (СЭМ). Рентгеноструктурный анализ (РСА) проводился на рентгеновском дифрактометре D8 ADVANCE ECO с использованием рентгеновской трубки с Си- анодом в диапазоне углов 20 30° -110° с шагом 0.01°. Для идентификации фаз и исследования кристаллической структуры использовалось программное обеспечение BrukerAXSDIFFRAC.EVAv.4.2 и международная база данных ICDD PDF-2.

Результаты и обсуждение

Анализ СЭМ изображений поверхности структур (Zn)SiO₂/Si-n, показал, что заполнение нанопор зависит от напряжения, прикладываемого к электродам. Установлено, что существует оптимальное напряжение, при котором наблюдается максимальное заполнение пор. В нашем случае это 1.6 В. При увеличении напряжения наблюдается выпячивание осажденного вещества ИЗ нанопор (образцы Таблица 3-6, 1). Рентгеноструктурное исследование образцов установил создание нанокластеров ZnO (Таблица 1). ZnO нанокластеры представляют из себя нанокристаллы. Наблюдается зависимость от напряжения типа кристаллической структуры нанокристаллов. ZnO. Только при напряжении U= 1.85 В формируется аморфное состояние оксида цинка. Основной тип структуры кубическая при напряжениях U= 1.6 и 1.7 В (примитивная кубическая) и гранецентрированная кубическая при 1.5, 1.75 и 1.85 В. Структура вюрцита наблюдалась только при одном напряжении U=1.6 B, следует отметить, что при напряжении 1.6 B сосуществовали структура вюрцита и кубическая примитивная, причем содержание вюрцитной фазы составляло 925% и степень кристалличности 45%. При увеличении времени осаждения от 10 до 20 минут(U=1.75в) наблюдалась трансформация структуры из сфалерита в примитивную кубическую с невысокой степенью кристалличности - 11%, при 10 минутном осаждении структура сфалерит имеет степень кристалличности 68%.

Таблица 1.

1. ЭХО, t=10 мин, U=1,5 В							
1.5.00 3.000 Lat 1.000 10 506 2/19-11	Фаза и тип	ZnO, Cubic	L, nm	166.2			
	структуры						
	Пространственна	F-43m(216)	Параметр	a=4.47932			
	я группа		ячейки, Å				
	(hkl)	200	Объем Å ³	89.87			
	20°	40.275	Степень	19			
	FWHM	0,308	кристалличн				
			ости				
	d, Å	2.23746	Содерж-е	100			
			фазы, %				
			Плотность	5.975			
			г/см3				

Результаты СЭМ и РСА исследований

2. ЭХО, t=10 мин, U=1,6 В								
	Фаза и тип		ZnO, Cubic		L, nm	181.31		
	структуры		Hexagona			170.3		
3 0 3 0 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3	Пространств.		Pm-3m(221)	Параметр	a=2.59828		
	группа		P63/mmc(1	9	ячейки, Å	a=2.69220,		
			4)			c=4.94215		
	(hkl)		111		Объем Å ³	17.54		
			100			31.02		
X 5,000 2.00VY 1.01 303 VOL 5/26/201	2θ°/FWHM		61,798/0,05	7	Степень	45		
			38,586/0,055		кристалличн	1		
					ости			
	d, Å		1.50003 2.33143		Содержание	7,5/92,5		
					фазы, %/	7,618/7,050		
					Плотность			
					г/см'			
3. ЭХО, t=10 мин, U=1,7 В	Фара		7-0 01		T more	166.0		
	Фаза и тип		ZnO, Cubic		L, nm	100.2		
	структуры		Dres 2 res (221	D 2 (221)		2.50929		
	пространствен	на	PIII-3III(221)	параметр	a=2.39828		
	я группа		111		$\frac{340000}{05100}$	17.54		
	(IIKI)		(1.004			17.54		
	20 ⁸ FWHM		61.804		Степень	17.54		
			0.062		кристалличн	L		
X 5,000 2,000 X 1252 5124 ¥107 7262 5139 X 5,000 2,000 X 1252 5124	d Å		1 49989		Солерж-е	100		
	u, 11		1.47707		фазы. %	100		
					Плотность	7.618		
					г/см3			
4. ЭХО, t=10 мин, U=1,75 В								
	Фаза и тип Zr		nO, Cubic L		nm	- / 21.4		
	структуры							
	Пространстве F-43m(216)		Параметр		a=4.47228			
	нная группа			ячейки, А				
	(hkl)) 111		Объем Å ³ Степень		89.45		
	200		0			<i>c</i> 0		
	200	34,742/				68		
X 5,000 2,000V 121 610 5/26/2017 X 5,000 2,000V 121 610 100 100 100 100	FWHM	40	,240	кŗ	оисталличн			
	Å	-/ (J,439 201 <i>47</i>			100		
	u, A	2	23900	_ ტ.	одерж-е	100		
		2.2	23700	Π Π	потность	5 975		
				Г/	см3	5.575		
5. ЭХО, t=10 мин, U=1,85 В					-			
	Фаза и тип	Zn	O, Cubic	L,	nm	57.49		
	структуры	Cu	ıbic			158.2		
	Пространстве	F-4	43m(216)	Π	араметр	a=4.47228		
	нная группа	Pn	n-3m(221)	ЯЧ	ейки, Å	a=2.59624		
	(hkl)	20	0	0	бъем Å ³	89.45		
		11	1			17.50		
	20°	40	.295/61.843	C	гепень	Amorphous		

	FWHM	0.164/0.064	кристалличн ости					
	d, Å	2.23642	Содержание	13.1/86.9				
		1.49903	фазы, %	5.975/7.618				
			Плотность					
			г/см3					
6. ЭХО, t=20 мин, U=1,75 В								
11 1,040 2.000 10 10 100 10 10 10 10 10 10 10 10 10	Фаза и тип	ZnO, Cubic	L, nm	171.33				
	структуры							
	Пространстве	Pm-3m(221)	Параметр	a=2.59828				
	нная группа		ячейки, Å					
	(hkl)	111	Объем Å ³	17.54				
	20°	61.740	Степень	11				
	FWHM	0.064	кристалличн					
			ости					
	d, Å	1.50130	Содерж-е	100				
			фазы, %	7.618				
			Плотность					
			г/см3					

Оксид уникальным материалом, обладает цинка является который как пьезоэлектрическими полупроводниковыеми так И свойствами. Это прямозонный полупроводник, обладающий широкой запрещённой зоной Eg = 3.36 эВ при 300K, имеет хорошую прозрачность, высокую электронную мдвижность, сильную люминесценцию при комнатной температуре. Поэтому наиболее частое применение в электронике – в лазерных диодах и светодиодах[18].

Заключение

При электрохимическом осаждении цинка в трековый темплэйт *a*-SiO₂/Si – n были получены нанокристаллы оксида цинка в трех кристаллических фазах: вюрцит, сфалерит и структура каменной соли. Следует отметить, что вид структуры зависит от приложенного к электродам напряжения. Установлен оптимальный режим ЭХО, с получением наиболее распространенной фазы ZnO, вюрцит.

Благодарности: Даулетбекова А.К., Гиниятова Ш.Г., Мурзагалиев М., Сейтбаев А.С., Журкин Е.Б., Наурызбаева Р.Ш., выражают благодарность МОН РК за грант АР05134367

Список использованных источников

1. J. Jensen, A. Razpet, M. Skupiński, G. Possnert, <u>Ion track formation below 1 MeV/u in</u> <u>thin films of amorphous SiO₂</u> Nucl Instr. (2006) 241 P. 119-126

2. J. Jensen, A. Razpet, M. Skupiński, G. Possnert <u>Ion tracks in amorphous SiO₂ irradiated</u> with low and high energy heavy ions Nucl Instr 245 (2006) P. 269-273

3. A. Dallanora, T.L. Marcondes, G.G. Bermudez, P.F.P. Fichtber, C. Trautman, M. Toulemonde, R.M. Papaleo Dependence on the ion energy and criterion of ethability, Journal of Applied Physics 104 (2008) 024307

4. A. Benvagoub, and M. Toulemonde Ion tracks in amorphous silica, Journal of Material Research (20150 30,(9) P.1529-1543

5. K.Hoppe, W.R.Fahrner, D.Fink. S. Dhamodoran, A. Petrov, A. Chandra, A. Saad, F. Faupel, V.S.K. Chakravadhanula, V. Zaporotchenko, An ion track based approach to nano- and nano-electronocs, Nucl. Instr. Meth. B 266 (2008) P.1642-1646.

6. E.Yu. Kaniukov, J. Ustarroz, D. V. Yakimchuk, M. Petrova, H. Terryn, V. Sivakov, A. V. Petrov, <u>Tunable nanoporous silicon oxide templates by swift heavy ion tracks technology</u> J. Nanotechnology, 27 (2016) 115305 (13pp)

7. M.Fujimaki, C.Rocksthul, X.Wang, K. Awazu, J. Tominaga, Y. Koganezawa, Y. Ohki, T. Komatsubara, Silica-based monolithic sensing plates for waveguide-mode sensors, Opt. Exp. 16 (2008) 6408 64-16.

8. N.Ferting, R.H.Blick, J.C.Berhends, Whole cell patch clamp recording performed on a planar glass chip, Biophys. J. 82(6) (2002) P.3056 - 3062.

9. S. E. Demyanov, E. Yu. Kaniukov, A. V. Petrov, E. K. Belonogov, E. A. Streltsov, D. K. Ivanov, Yu. A. Ivanova, C. Trautmann, H. Terryn, M. Petrova, J. Ustarroz, and V. Sivakov// On the morphology of Si/SiO₂/Ni nanostructures with swift heavy ion tracks in silicon oxide, Journal of Surface Investigation, Vol.8, No.4, 2014, P. 805-813.

10. S. Demyanov, E. Kaniukov, A. Petrov, V. Sivakov. Positive magnetoresistive effect in Si/SiO₂ (Cu/Ni) nanostructures// Sensors and Actuators A 216(2014) P. 64-68.

11. V. Sivakov, E. Yu. Kaniukov, A. Petrov, O. Korolik, A. Mazmanik, A. Bochmann, S. Teichert, I. J. Hidi, A. Schleusener, D. Gialla, Maria Eugenia Toimil –Molares, C. Trautmann, J. Popp, S. Demyanov Novel silver nanostructures formation in porous Si/SiO₂ matrix.//Journal of Crystal Growth 400 (2014) P.21-26.

12. .L.Fleischer, Nuclear Tracks in Solids Ed.R (Berkeley:Univ. California Press, 1975) P.23-27.

13. A. Alzhanova, A. Dauletbekova, F. Komarov, L. Vlasukova, V. Yuvchenko, A. Akilbekov, M. Zdorovets, Peculiarities of latent track etching in SiO_2/Si structures irradiated with Ar, Kr and Xe ions, Nucl. Instr. Meth. B 374 (2016) P.121-124

14. Yu. A. Ivanova, D. K. Ivanou, A. K. Fedotov et al, Electrochemical deposition of Ni and Cu onto monocrystalline n-Si(100) wafers and into nanopores in Si/SiO₂ template, J. Mat. Sci 42 (22) (2007) P.9163 - 9169

15. Toimil-Molares, M.E., Buschmann, V., Dobrev, D., Neumann, R., Scholz, R., Schuchert, I.U. and Vetter, J., Single-Crystalline Copper Nanowires Produced by Electrochemical Deposition in Polymeric Ion Track Membranes, Advanced Materials, 13, 62, 2001

16. Kadyrzhanov, D.B., Zdorovets, M.V., Kozlovskiy, A.L., Kenzhina, I.E., Petrov, A.V. Modification of structural and conductive properties of Zn nanotubes by irradiation with electrons with an energy of 5 MeV Materials Research Express. 2017. 4(12),125023

17. Rusakov, V.S., Kadyrzhanov, K.K., Kozlovskiy, A.L., Fadeev, M.S., Luk'yanova, E.N. Studying the properties of Fe and Fe–Co nanotubes in polymer ion-track membranes // Bulletin of the Russian Academy of Sciences: Physics. 2017. 81(7), P.831-835

18. C. Klingshirn "ZnO: Material, Physics and Applications" ChemPhysChem. 2007 8 P.782 - 803

ӘОЖ 62-716

КҮН ПАНЕЛІН СУМЕН САЛҚЫНДАТУ АРҚЫЛЫ ӨНІМДІЛІГІН АРТТЫРУ

Нұрғали Асылхан Мамажанұлы

Қазіргі таңда күн энергетикасы қарқынды дамып келе жатқан салалардың бірі. Қазақстанның оңтүстік аймақтары күн энергетикасының жоғары потенциалына ие болып келеді. Алайда, жоғары атмосфералық температура күн панелі өнімділігінің төмендеуіне әсер етеді, себебі күн батареясының ПӘК-і 15% шамасында болып табылады. Қалған күн энергиясы жылуға түрленеді де, панель температурасын арттырады. Жоғары температура өз кезегінде батарея өнімділігін төмендетеді және құрылымдық бұзылуға әкеліп, оның жарамдылық мерзімін кемітеді.