УДК 535.375 КИСЛОРОДНЫЕ ЦЕНТРЫ ЛЮМИНЕСЦЕНЦИИ В КРИСТАЛЛАХ LiF – MeO

Байжолов Қанат Алиевич, Сәрсенғалиева Қаракөзайым Мақсатқызы kanattkmz@gmail.com Магистрант ЕНУ им. Л.Н.Гумилева, Нур-Султан, Казахстан Научный руководитель – Карипбаев Ж.Т.

Спектрально-кинетические параметры люминесценции кристаллов LiF, легированных различными оксидами поливалентных металлов (Li,Ti, Fe, W, U) изучались в интервале температур 100–300 К и в диапазоне поглощенных доз 0–105 Гр. Модель для описания роли поливалентной активации катиона в процессах рассеяния энергии излучения в объем кристалла предлагается.

Широкое использование ионизирующего излучения В различных сферах деятельности, например, в медицинской диагностике, неразрушающем контроле, оценке запасов природного сырья, в сельском хозяйстве и т. д., требует огромных усилий для обнаружения радиации[1–3]. разработки научных основ В настоящее время предпринимаются усилия для разработки сцинтилляторов, характеризующихся быстрым откликом, высоким световым выходом, низким уровнем естественной радиоактивности и высокой термостабильностью. Синтез кислородсодержащих матриц для преобразования высокоэнергетического излучения в короткоживущие импульсы видимого диапазона является одним из новых направлений. Чтобы овладеть технологией синтеза таких материалов, особенно важно иметь данные о структуре синтезируемых материалов, их стабильности, влиянии поверхностных эффектов на эффективность преобразования энергии ионизирующего излучения и эффектах ионизирующего излучения. на состояниях как легирующей, так и самой матрицы. Целью данной работы является изучение спектральнокинетических параметров люминесценции кристаллов LiF, как выращенных, так и эксплуатируемых в области ионизирующего излучения, легированных оксидами различных металлов. Показано, что тип легирующей примеси определяет не только спектральнокинетические параметры люминесценции, но и процессы распределения энергии в объеме кристалла, что в конечном итоге определяет величину светоотдачи люминесцентного материала.

Внутренняя дефектность исследованных кристаллов была получена при 300 К на основе спектров поглощения (СП) и спектров излучения (СИ) в диапазонах 12.0-0.1 и 4-1 эВ соответственно. Измерения СП в диапазоне от 12 до 6 эВ проводились в Государственном оптическом институте (Санкт-Петербург) с использованием спектрометра на основе вакуумного монохроматора.

СП в диапазоне от 6 до 1 эВ регистрировали с помощью спектрофотометров СФ-256 и СФ-256 ИК. СП в инфракрасной области измеряли в диапазоне от 0,5 до 0,1 эВ на инфракрасном спектрометре Nicolet 5700. СИ измеряли с использованием спектрофлуориметра Agilent.

Были изучены следующие типы кристаллов:

1) «чистые» (нелегированные) кристаллы LiF, выращенные методом Стокбаргера во фторированной атмосфере, и кристаллы LiF с примесью LiOH;

2) кристаллы LiF, легированные MeO (Me: Li, Fe, Ti, W), выращенные методом Киропулуса в атмосфере азота;

3) кристаллы LiF, легированные 0,01 мас.% Уранилнитрата;

4) Кристаллы LiF, легированные уранилнитратом 0,01 мас.% и LiOH как соактиатор.

СП исследованных кристаллов приведены в таблице 1. Как следует из таблицы, нелегированные кристаллы LiF прозрачны в диапазоне 12-0,1 эВ. СП легированных кристаллов в области ВУФ состоит из полос 6,2, 7,3, 8,9 и 11,2 эВ, аналогичных тем, которые

опубликованы в [5, 6], принадлежащих кислородсодержащим центрам: ионам O_2^- и OH⁻, O² молекулы и диполи $O_2 - V_a$, окруженные различными типами решеточных дефектов.

СП легированных кристаллов в ИК-области состоят из полос, образованных свободными ионами ОН (полоса 0,46 эВ) и комплексами Me⁺ - OH⁻ (ряд полос в диапазоне 0,45—0,43). эВ)[7-9]. Число полос, создаваемых такими комплексами, и их относительная интенсивность, по-видимому, определяются характером взаимного пространственного распределения ионов OH⁻ и Me⁺.

Концентрация свободных ионов ОН⁻ в кристаллах не превышала 10¹⁸ см-³. Значение определялось по формуле Смакулы, а сила осциллятора перехода при 0,46 эВ составляла 5,10-3 [7]. Следует отметить, что гидроксид не вводился в шихту в качестве кодопанта. Он присутствует в кристаллах, легированных оксидами металлов, либо из-за условий синтеза солей LiF, либо из-за присутствия влаги в атмосфере во время роста кристаллов. Спектры поглощения изученных кристаллов

Таблица 1

Кристалл	Спектральное положение полос, эВ												
LiF	12												
LiF-Li ₂ O	10.5	9.0	7.3	6.2									
LiF-OH	10.5	9.05	7.3	6.2							0.463		
LiF-Fe ₂ O ₃	10.6	9.0	7.2	6.2	5						0.463	0.45	
LiF-TiO ₂	-	-	-	6	5						0.463	0.447	
LiF-WO ₃	-	-	7	6							0.463	0.449	
LiF(U)-OH	-	-	-	-	5.1	4.07	3.0				0.463		0.41
LiF(U)-O	_	_	7.6	6.2	5.1	4	3.1						
LiF(U)*	9.76		7.5	6.2	5.1	4.07	3.0	2.5	2.4	2.3			

Короткоживущий компонент затухания состоит из полосы 3,1 эВ с полушириной 0,5 эВ (рис.1). На спектральное положение полосы, ни время жизни соответствующих эмиссионных центров не зависят от типа катиона активации. По-видимому, такие центры, скорее всего, представлены диполями (O₂ - V_a), наличие которых в кристаллах LiF доказано[5].

Возбуждение центра свечения и последующий излучательный переход в основное состояние, по-видимому, сопровождается обратимым переносом заряда на анионную вакансию:

$$(\mathcal{O}^{2^{-}} - V_a) + h \mathbf{v} \rightarrow \left(\mathcal{O}^{2^{-}}\right)^* - V_a \rightarrow (\mathcal{O}^{-} - V_a + e) \xrightarrow{\tau_1} (\mathcal{O}^{2^{-}} - V_a) + h \mathbf{v}_0.$$
(1)

Возможность захвата дырок в ионе O^{2-} в ионных кристаллах обсуждается во многих работах (например, [10, 11]). Долгоживущий компонентный затухания фотолюминесценции состоит из полосы с расположением пика, и длительность спада в значительной степени определяется типом катиона активации (рис.1, кр. 2–7).

Рисунок 1 – Спектры ФЛ короткоживущих (кривая 1) и долгоживущих (кривые 2-7) компонентов затухания люминесценции в кристаллах LiF, легированных Li₂O (кривые 1 и 2)

Fe₂O₃ (кривые 1 и 3), TiO₂ (кривые 1 и 4), WO₃ (кривые 1 и 5), UO₂ (NO₃) 2-5 мас.% LiOH (кривые 1 и 6) и UO₂ (NO₃) 2 (кривые 1 и 7). Спектры нормированы (E_{ex} = 4,66 эВ).

Как видно из представленных результатов, для легирующих примесей Li, Ti, Fe, W и U положение пика полосы излучения в кристалле LiF составляет от 3,1 до 2,35 эB, в то время как длительность затухания Φ Л колеблется от 380 до 25 мкс при 300 К (кр.4). Долгоживущий излучательный переход в диапазоне 3–2,6 эB относится к комплексу примесей, включающему ионы O²⁻, поливалентный катион активации и либо катионные, либо анионные вакансии в зависимости от числа ионов O²⁻, координированных с Me_iⁿ⁺.

Список использованных источников

1.Nikl M., Laguta V, and Vedda A, Phys. Stat. Sol. B., 245, 1701-1722 (2008).

2.Mikhailik V. and Kraus H., J. Phys. D: Appl. Phys., 39, 1181-1191 (2006).

3.Nowotny R., Phys. Med. Biol., 49, 2599-2611 (2004).

4. Aleshkevich N.,. Titkov E, and Komjak A., J. Appl. Spectrosc., 33, 1060-1064 (1980).

5.Egranov A. V. and. Radzhabov E. A, Spectroscopy of Oxygen and Hydrogen Centers in Alkali-6.Halide Crystals [in Russian], Nauka, Novosibirsk (1992).

7.Meistrich M. L., J. Phys. Chem. Solids., 29, 1111-1118 (1968).

8.Wedding E. and Klein M., Phys. Rev., 177, 1274-1288 (1969).

9.Fowler W.,. Capelletti R, and Colombi E., Phys. Rev. B., 44, 2961-2968 (1991).

10. Gucrelsberger K and Zelsman H. R., Sol. State Commun., 32, 551-552 (1979).

11.Gummer G., Z. Phys., 215, 256–278 (1968).

12.Fush H. J, Karthe W., and Borner S., Phys. Stat. Sol. (b), 118, 211–215 (1983).