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a b s t r a c t

The thermal motion of graphene atoms was investigated using angular distributions of transmitted
protons. The static proton-graphene interaction potential was constructed applying the Doyle-Turner's
expression for the proton-carbon interaction potential. The effects of atom thermal motion were
incorporated by averaging the static proton-graphene interaction potential over the distribution of atom
displacements. The covariance matrix of graphene displacements was modeled according to the Debye
theory, and calculated using Molecular Dynamics approach. Proton trajectories were used for con-
struction of angular yields. We have found that there are lines, called rainbows, along which the angular
yield is very large. Their evolution in respect to different sample orientation was examined in detail.
Further we found that atom thermal motion has negligible influence on rainbows generated by protons
experiencing distant collisions with the carbon atoms forming the graphene hexagon. On the other hand,
rainbows generated by protons experiencing close collisions with the carbon atoms can be modeled by
ellipses whose parameters are very sensitive to the structure of the covariance matrix. Numerical pro-
cedure was developed for extraction of the covariance matrix from the corresponding rainbow patterns
in the general case, when atoms perform fully anisotropic and correlated motion.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

The rainbow effect occurs if particles from neighbouring sec-
tions of the impact parameter plane are scattered to the same
section of the scattering angle plane. As a consequence, the dif-
ferential cross-section becomes infinite along certain lines, called
rainbows. In 1986, it was predicted that rainbow effect occurs in the
classical axial transmission of protons through a very thin Si crystal
[1]. The effect, named the crystal rainbow effect, was experimen-
tally verified soon after that [2]. Later, it was shown that the
rainbow effect appears also in ion transmission through thicker
crystals [3]. Detailed theoretical studies of the rainbows in ion
transmission through nanotubes [4] and graphenes [5] have been
published.

Transmission of ions through crystals, and nanotubes have large
number of potential applications [6e8]. Material analysis plays
crucial part in development of new technologies. It has been shown
that rainbow scattering could be used for that purpose. Rainbow
lines were used for construction of the accurate proton-Si interac-
tion potential [9]. In the case of carbon nanotubes, theoretical
studies showed that rainbows could be used for characterization of
the nanotube bundles [10,11], determination of the radius and
length of the nanotube [12], and for identification of the type and
linear density of the aligned Stone-Wales defects [13]. In Ref. [5] it
has been suggested that rainbow lines could also be used for
determining the Debye-Waller form factor for atoms in the gra-
phene and other similar materials.

Nowadays existing and emerging nanotechnologies try to
harness exceptional properties of various nanostructured materials
such as very thin crystals, nanotubes or graphene. Some of exotic
graphene thermal properties are extremely high thermal conduc-
tivity [14], and a large near-field radiative heat transfer [15] which
can be several order of magnitude larger than limit set by the
Stefan-Boltzmann law. Many of the thermal properties of graphene
are shared with graphite and stem out of its anisotropy [16]. The
lattice vibrations (phonons) determine the specific heat of gra-
phene [17,18]. The peculiar thermal properties of graphene can be
connected with corresponding specific lattice vibrations [19]. The
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result varies for free-standing graphene compared to graphene on
different substrates. The analysis of graphene's thermal vibrations
can be full of far-reaching consequences even for the realization of
devices where the thermal properties of graphene can play a role.

Thermally induced motion of atoms in graphene is highly
nontrivial. For example, according to the famous and experimen-
tally verified Mermin-Wagner theorem [20] atom thermal fluctu-
ations destroy any long range crystalline ordering at any finite
temperature. The conclusion, which held for more than 30 years,
was that perfect planar crystal can't exist. This was one of the main
reasons why discovery of graphene immediately induced such
scientific interest. Later, detailed investigations showed that inter-
action between bending and stretching can stabilise graphene
sheet, but as a consequence graphene sheet becomes rippled [21].
Thus perfect 2D crystal can exist but only in the 3D space. Although
finite, fluctuations of the graphene ripples hight can be very large as
predicted in Molecular dynamics simulations [22]. Another way to
circumvent the restrictions of the Mermin-Wagner theorem, re-
ported in the Ref. [23], is to assume that flat shape of graphene
arises due to buckling of the atoms on the smallest possible scale
which results in upedown asymmetry of the graphene. It is clear
that thermal motion of atoms in this two cases can be very
different.

In this paper we will elaborate on the idea stated in the Ref. [5]
that rainbow scattering of 5-keV protons could be used for inves-
tigation of the thermal motion of graphene atoms. Covariance
matrix of atom displacements will be modeled according the Debye
theory, and calculated using Molecular Dynamics approach. It
should be noted that set of all positive definite matrices can be
decomposed into equivalence classes consisting of rotationally
equivalent matrices. Thus, arbitrary covariance matrix can be
classified according the number of distinct eigenvalues in its
spectrum. It will be shown that rainbow scattering allows one to
distinguish between covariance matrices belonging to the different
classes. Therefore, our analysis applies to the most general case
possible of the carbon atom thermal motion.

The plan of the paper is as follows. In sec. 2 we develop the
theoretical framework, constructing firstly the interaction poten-
tial, and then finding the solutions of the equations of motion for
proton scattering by the graphene. Obtained trajectories will be
then used for the construction of the mapping of the impact
parameter plane to the transmitted angle plane allowing us to
describe the proton-graphene rainbow structure. In sec. 3 we
discuss in detail our results, determining firstly the covariance
matrix of the graphene vibrations, and then proceeding to describe
the transmission rainbow patterns, before showing finally how to
extract the covariance matrix from the rainbow patterns in the
general case when atoms perform fully anisotropic and correlated
motion. We draw the conclusions of our work in the last section, i.e.
sec. 4.

2. Theory

2.1. Construction of interaction potential

In this chapter it was adopted thatmedian plane of the graphene
coincides with the transverse plane xOy of the Cartesian coordinate
reference system, which z axis points in the direction of the proton
transmission. In this convention x is the vertical while y is the
horizontal axis. In respect to this coordinate system the direction of
the proton beam was specified by polar angle Q and azimuthal
angle F (measured in respect to the positive direction of the y axis),
respectively.

We have assumed that proton-carbon interaction potential en-
ergy is adequately described by the Doyle-Turner's expression [24].
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where r is a column vector of proton-carbon relative distance,
rT denotes transposed distance vector, I is identity matrix; a ¼
ð0:07307, 0.1951, 0.04563, 0:01247Þ nm and
b ¼ ð0:369951;0:112966; 0:028139; 0:003456Þ nm2 are carbon
Doyle-Turner fitting parameters [24]; Z is the reduced Planck con-
stant, mo is electron mass, and Z1 ¼ 1 is proton atomic number.

The interaction time of protons having kinetic energy Ek ¼ 5 keV
with individual carbon atoms is considerable shorter than period of
the atom thermal vibrations. Therefore, transmitting through gra-
phene sheet the proton effectively interacts with the static lattice in
which atoms are randomly displaced from the equilibrium position
[25,26]. Strictly speaking thermal motion brakes the symmetry of
the graphene sheet. However, since amplitude of vibrations sta-
tistically fluctuate the effect of translational symmetry braking is
small, and shall be neglected. Rotational symmetry of graphene
potential will remain broken since in graphene amplitude of off-
plane displacements can be significantly different from the corre-
sponding amplitudes of in-plane displacements. The simplest way
to introduce thermal vibrations while respecting the graphene
translational symmetry is tomodel the effective potential at a given
distance from the atom equilibrium position as an average potential
of fictitious ensemble consisting of the large number of displaced
carbon atoms. Let vector r represents the distance of the proton
from the atom equilibrium position and rn the displacement vector
of the n-th atoms. The ensemble averaged potential is then given by
the equation

VthðrÞ ¼
1
N

X
N
n¼1 Vðr� rnÞ; (2)

where N represents the total number of atoms. Note that vectors rn
for n ¼ 1;…;N are random samples from the probability distribu-
tions Pthn of individual atoms which in principle can be different
(because of boundary conditions, presence of defects etc.), thus the
introduced virtual copies of atom do not represent the statistical
ensemble.

When number of atoms in a graphene N is large the Eq. (2) can
be further simplified. The arithmetic average in Eq. (2) removes
explicit dependence on the carbon atom displacements making
every lattice site again equivalent. Following the same logic let us
introduce the concept of “averaged atom”, whose physical prop-
erties are the arithmetic averages of the individual atom properties.
Displacement of such atom is given by the expression

r
0 ¼ 1

N
ðr1 þ…þ rNÞ (3)

Since atoms differ only by theway they vibrate, averaging do not
affect other physical properties. We shall replace each member of
the introduced ensemble by averaged atom, and create new
ensemble of identical copies i.e the statistical ensemble. Average
displacement vector r

0
now should be interpreted as a new random

variable with probability distribution Pth, whose different samples
now characterize different states of the atoms forming the statis-
tical ensemble. According the central limit theorem [27], when N/
∞ the probability distribution Pth becomes the multivariate normal
distribution [28] given by the following expression
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where S ¼ E ðr0,r0T Þ is a covariance matrix defined as a mathe-
matical expectation of the matrix r
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which can be evaluated analytically giving
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The proton-graphene interaction potential is the sum of proton-
carbon interaction potentials that dominantly contribute to the
scattering process. Since all thermally averaged proton-graphene
potentials are now equal, introduced sum should reflect graphene
translational symmetry and geometric structure. The rhombic
Bravais lattice of graphene is defined by the primitive vectors a1 ¼
ð

ffiffiffi
3

p
l=2;3l=2;0Þ and a2 ¼ ð�

ffiffiffi
3

p
l=2;3l=2;0Þ, where l ¼ 0:144 nm is

the carbon-carbon bond length. The repeating motif consists of two
carbon atoms. Positions of the left and the right atom respectively,
relative to the vertices of the unit cells are g1 ¼ ð0;�l=2;0Þ and
g2 ¼ ð0; l=2;0Þ. In the coordinate system attached to the center of
the graphene unit cell positions of the carbon atoms in graphene
are given by the following equation

Rn1;n2;n3 ¼
1
2
ð2n1 � 1Þa1 þ

1
2
ð2n2 � 1Þa2 þ gn3

; (7)

where n1 and n2 are integers, and n3 ¼ 1;2. The potential at the
point r relative to the unit cell center reads

UðrÞ ¼
X
n1;n2

X2
n3¼1

Vth


r � Rn1;n2;n3

�
: (8)

2.2. The proton-graphene rainbow scattering

Newton equations of motion for protons scattering by the gra-
phene sheet read

m
d
dt

v ¼ �VUðrÞ (9)

where m stands for the proton mass, v for its velocity vector, and t
denotes the time. The angular deflection with respect to the z axis,
is described by the pair of angles q ¼ ðqx; qyÞ, defined by the ex-
pressions: tanqx ¼ vx=vz, and tanqy ¼ vy=vz, respectively. The
angular proton yield in the plane z ¼ z0, labeled Yqðq; z0Þ is defined
as the number of protons in the surface element dqxdqy centered at
the angle q ¼ ðqx;qyÞ. Potential UðrÞ has non-negligible values only
for �zm � z � zm called the interaction interval, planes z ¼ � zm,
and z ¼ zm are called the entrance and the exit plane respectively.
This means that shapes of distribution Yqðq; z0Þ can change only for
variable z0 in the interaction interval, thus yield Yqðq; z0Þ recorded
by the detector placed far away (z0/∞) is actually equal to the
Yqðq; zmÞ.
We have assumed that the proton beam is parallel, mono-

chromatic of kinetic energy Ek, and uniformly distributed in the
initial transverse plane. Therefore, appropriate initial conditions at
the entrance plane are rð0Þ ¼ ðb;�zmÞ and vð0Þ ¼ vðsinQcosF;
sinQsinF; cosQÞ, respectively, where proton impact parameter
vectors b ¼ ðbx; byÞ are samples from the uniform distribution and v
is their initial velocity v ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ek=m
p

.
Solutions of Eq. (9) for all b define a mapping qðb;Q;FÞ of initial

positions in the entrance plane to the final deflection angles q in the
exit plane, anglesQ and F are treated as fixed parameters. It can be
shown that differential cross-section in the exit plane sdiff ðq;Q;FÞ
is proportional to the ratio of infinitesimal surface elements
dbxdby=dqxdqy. Using the introducedmapping b/q the differential
cross-section in the entrance plane can be expressed as [5].

sdiff ðb;Q;FÞ � 1
jdet Jqðb;Q;FÞj; (10)

where Jqðb;Q;FÞ is Jacobian matrix of the mapping b/q. Note that
Jacobian is singular along the lines which are solutions of the
equation

jdet Jqðb;Q;FÞj ¼ 0; (11)

which are called the impact parameter rainbows lines. In the exit
plane the differential cross-section sdiff ðq;Q;FÞ is infinite along the
lines, called angular rainbow lines, which are images of the impact
parameter rainbow lines. According to the inverse function theo-
rem, angular rainbows separate areas of different multiplicity of the
mapping q/b (i.e.mapping inverse to the b/q). The area of larger
multiplicity is called the bright side of the rainbowwhile the area of
lower multiplicity is called the dark side of the rainbow. Therefore,
singularities and multiplicity of the mapping q/b dominantly
determine the shape of angular distributions Yqðq;zmÞ.
3. Results and discussion

We assume that the graphene samples are produced following
similar procedures as described in Refs. [21,29]. In the first
approach graphene sheet is epitaxially grown on appropriate sub-
strate. Substrate was then removed, and cleaned graphene sheet
transferred to a high quality TEM grid which provides mechanical
support and allows proton transmission only through grid open-
ings. The size of the grid was assumed to be sufficiently large that
obtained graphene sample can be considered as freestanding
infinite graphene sheet [29]. In the second approach on-top of a
epitaxially grown graphene metallic scaffolding of decreasing
spacing was deposited. Substrate was removed only form parts of
the sample leading to the collection of the suspended graphene
nanoribbons [21].

In this paper we study interaction of a uniform 5-keV proton
micro beam [30] with described graphene samples. Schematics
diagram of the appropriate experimental setup is shown in Fig. 1. It
consists of: a proton source, an accelerator system, collimation
system and an interaction chamber equipped with the 3-axis
goniometer and detector. Proton detection system consists of
angularly resolved electrostatic analyzer, and image sensor
[31e34]. Construction of its electrodes prevents detection of the
neutral particles, while at the same time alow detection of protons
belonging to the specific scattering plane (set by the azimuthal
angle of goniometer) and of specific energy (set by the electrode
voltage). The detected proton position is directly proportional to
the scattering angle. We assume that the angular and energy res-
olution of the detector are approximately 1mrad and 0.15%



Fig. 1. Schematics of the experimental setup. (A colour version of this figure can be
viewed online.)
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respectively. It has been shown that small angular and energy
dispersions of the proton beam have negligible effect on the
rainbow patterns. They influence only the sharpness of the rainbow
light-to-dark transitions [5]. Moreover, both dispersions are small
for the micro beam and will be neglected [30].

Proton de Broglie wavelength l ¼ 4:0476� 10�4 nm is consid-
erable smaller than the carbon-carbon bond length l ¼ 0:144 nm,
therefore protons can be treated as classical particles. It has been
shown that for protons in this energy range the Ziegler-Biersack-
Littmark theory of energy loss gives results of acceptable accuracy
[35,36]. According to it total proton energy loss and dispersion of
the scattering angle caused by interaction with electrons are equal
to 22 eV and 0.35mrad respectively. Both values are smaller than
analyzer resolutions and will be neglected. The probability for
neutralization of 5-keV protons is around 40%, while probability for
multiple ionization processes is negligible [35,36]. Therefore,
electrostatic analyzer should be set in such way to enable detection
only of particles having exit charge state þ1, and energy of 5-keV.
The pressure in the interaction chamber should be approximately
5� 10�9 mbar in order to minimize contamination of the sample
and deformation of proton beam before and after interaction with
the target. High vacuum is important for correct operation of the
electrostatic analyzer, since it minimizes distortion of the electric
field of its electrodes, and increases measurable energy range.

Real samples are rarely perfect. Usually they are contaminated
by impurities, leftovers from the production processes, and can
contain defects of various kind. Mechanisms of defect formation in
nano-structured materials are significantly different than those
producing defects in bulk solids [37], and interaction with the
substrate can influence the defect formation [38]. It is interesting to
note that presence of defects does not necessarily have negative
effect on the properties of nano-structured martials. Ion beam can
be used for inducing controllable changes of material morphology,
and for fine tuning of their mechanical, electric, and magnetic
properties [7,38e41]. However, in this case special care must be
taken to minimize the damage of the graphene samples caused by
the proton beam. The energy required to displace carbon atom from
graphene sheet is around Ed ¼ 22.2 eV [42]. Proton creates vacancy
in direct head-on collision only if its kinetic energy is larger than
threshold of approximately Emin ¼ ð1þ xÞ2=ð4xÞEd ¼ 78:2 eV,
where xz12 is the ratio of proton and carbon masses [42]. Any
proton is potentially capable of producing defects. However, ac-
cording to the ZBL theory for 5-keV protons electronic energy loss is
approximately 35 times larger than nuclear energy loss. On average
out of 22eV lost in proton transmission through graphene sheet,
only 0.63 eV is transferred to themotion of carbon atoms. Therefore
we can conclude that probability for the single defect formation is
low, and that probability for double vacancy or complex defect
formation is negligible (see also Fig. 1. (c), (d), and (f) of the
Ref. [42]). This conclusion is confirmed by the SRIM calculation
which predicts formation of 0.0023 vacancies per proton impact.
Therefore, if applied proton fluence is low enough (approximately
1012d1013 protons per cm2) then defect formation is minimized.
Lower operating proton current also improves operation of proton
detector since it prevents saturation of the image sensor.
3.1. The covariance matrix

To model the covariance matrix S of the graphene steady state
thermal motion we have considered two different approaches. In
the first approach we have assumed that thermal vibrations of the
carbon atoms are isotropic and adequately described by the Debye
model [25,26,43]. The covariance matrix is then S ¼ sI, probability
density distribution of atom displacements is

Pthðr0Þ ¼
1


2ps2
�3=2 exp

"
� kr0k2

2s2

#
; (12)

and variance of displacements is

s2 ¼ 3Z2

McmukBQD

�
Df ðQD=TÞ

QD=T
þ 1
4

�
; (13)

hereMc ¼ 12:0107 is carbon atomic weight,mu ¼ 1:6605,10�27 kg
is universal atomic mass unit, QD ¼ 2000 K is the carbon Debye
temperature of diamond [25], kB ¼ 1:3806,10�23 J/K is Stefan-
Boltzmann's constant, T is the graphene absolute temperature, and
Df is the Debye's function. At the temperature T ¼ 300 K, according
to Eq. (13), variance of the carbon atoms displacements is s ¼
17:3663 pm2.

This simple model correctly describes thermal vibration of
atoms forming cubic crystals [25,26], or carbon nanotubes [44]. In
the case of freestanding graphene, or nanoribbons, Debye model is
applicable only for very low temperatures. Because there is no
stabilizing influence of the neighbouring layers, variance of the off-
plane displacements should be larger than variances of the in-plane
displacements. Therefore, in the second approach the correct atom
displacements were calculated using LAMMPS a classical molecular
dynamic simulator [45].

Atom trajectories were calculated by taking into account con-
tributions from all neighbouring atoms filling a rhombic prism. The
size of computational supercell is N1a1 � N2a2 � cez , where N1, N2,
and c denote numbers of unit cells in directions of primitive vectors,
and its size in the normal direction, respectively. To eliminate in-
fluence of the artificial boundary in the normal direction a very
large value was chosen for the parameter c ¼ 4 nm. The interatomic
force was calculated from AIREBO-type potential with parameteri-
zation taken from the Ref. [46]. All simulations were performed
within the canonical phase space distribution corresponding to the
constant volume, temperature and number of particles (the NVT
ensemble). A time step of 1 fs was used in calculations and the state
of the supercell was saved in each time step for subsequential
analysis.

Wewill illustrate the procedure for calculation of the covariance
matrix in the case of graphene sheet. Let us define the time
dependent covariance matrix of the n-th atom displacements SnðtÞ
by the relation
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SnðtÞ ¼ 1
t

ðtþt=2

t�t=2

2
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3
75dt0

(14)

When t is large, integral in the Eq. (14) is dominated by the
steady state motion of the carbon atom. Therefore, the covariance
matrix of the n-th atom displacements is Sn ¼ limt/∞SnðtÞ. Note
also that length of the fixed time interval t, called window, must be
sufficiently large so that steady state motion can be accurately
represented. According to the central limit theorem time depen-
dent covariancematrix SðtÞ, and covariance matrix of the graphene
steady state motion S are given by following expressions

S ¼ lim
t/∞

SðtÞ ¼ lim
t/∞

1
N

X
n
SnðtÞ ¼ 1

N

X
n
Sn; (15)

where N ¼ 2N1N2 is number of atoms.
In the case of graphene sheet, periodic boundary conditions

were applied in the plane, while fixed boundary conditions were
applied in the normal direction.

Fig. 2 shows calculated results for supercell containing
N ¼ 11250 atoms (i.e. 75� 75 unit cells) at the temperature of T ¼
Fig. 2. (a) Dependencies of the atom mean squared displacements (the gray lines), and cova
lines show fits of covariance matrix components only for the atom steady state motion. (b) S
the linear supercell size L, red lines are fits by the power law ALz. Solid blue triangle shows th
Major ripples are denoted by thick red lines. (A colour version of this figure can be viewed
300 K. Averaged displacements squared in x, and z directions,
respectively, are shown in the Fig. 2(a) by gray lines. Graph of the
averaged displacement squared in the y direction looks almost
completely identical to the graph of the corresponding displace-
ment in the x direction and it is not reproduced here. Fig. 2(a)
clearly reveals that the settling time of the graphene transient
response is approximately 2 ns.

Red lines in Fig. 2(a) show xx and zz components of the matrix
SðtÞ (i.e. functions s2x ðtÞ, and s2z ðtÞ). We have found that optimal
window size was t ¼ 2 ns. The remaining diagonal component
s2yðtÞ was found to be practically indistinguishable from the s2x ðtÞ,
and is not shown here. Values of off-diagonal components of the
matrix SðtÞ were found to be small irregularly fluctuating around
0 pm2. Maximal deviation from the mean value of approximately
0.8 pm2 was observed for xz and yz matrix components.

In order to estimate the t/∞ limit the first 2 ns representing
transient responses of the matrix SðtÞ was discarded. Remaining
parts were fitted by the function Aþ B expð� CtÞ, which allows
easy determination of the t/∞ limit. If resulting value of the
exponent C is very large then fitting procedure can be numerically
unstable. In that case covariance matrix components were fitted by
the constant function. Obtained fitting function for xx and zzmatrix
components are in Fig. 2(a) shown by the blue lines.

We have found that magnitudes off-diagonal elements of the
riance matrix components (the red lines) on time for graphene at T ¼ 300 K. The blue
olid black squares show scaling of the equilibrium covariance matrix components with
e result of the simulation from the Ref. [22]. (c) State of the graphene sheet at t ¼ 2:9 ns.
online.)
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matrix S are more than 80 times smaller than magnitudes of di-
agonal components. They were neglected in subsequent analysis. It
should be noted that difference s2y � s2x was found to be two times
smaller than magnitude of the smallest neglected component sxy.
Therefore, we have disregarded this difference, defined the
quantity s2r ¼ ðs2x þ s2yÞ=2, and took that matrixS ¼ diagðs2r ; s2r ; s2z Þ
¼ diagð17:67;17:67;2619:10Þ pm2 represents the true covariance
matrix of the graphene thermal vibrations, at the T ¼ 300 K. The
final result is in agreement with the graphene symmetry which
requires that in the steady state atoms perform uncorrelated, and
isotropic in-plane motion. All obtained results are summarized in
the Table 1. Described procedure was subsequently applied for
determination of all considered covariance matrices.

Note that components of theS are finite in contrast to the claims
of the Mermin-Wagner theorem [20] which implies that they
should be infinite. Our calculations show that the same conclusion
holds for other temperatures. Obviously, higher order interactions
such as many-body interactionwhich are neglected in the Ref. [20],
but included in the AIREBO potential [46], are responsible for the
stabilization of the graphene. However, this doesn't mean that
variance of the off-plane motion can't be very large. Similar
behaviour was noticed long time ago in the theoretical calculation
of the off-plane variance of a single graphite sheet [47]. It has been
shown that it is essential to include the shear interaction between
neighbouring graphite layers in order to get a good agreement with
the experiment.

To really understand nature of graphene motion we have
investigated the scaling of the matrix S with increased linear
sample size L defined by the following relation L ¼ ffiffiffiffiffiffiffiffiffi

LxLy
p

, where Lx,
and Ly are sizes of the sample in the x, y direction, respectively. We
have analysed supercells containingN ¼ 2450,11250,18050, 31250,
42050, 61250, 80000, 84050, and 120050 carbon atoms. In Fig. 2(b)
those 18 data points are shown by the solid black squares. The data
show that both variances s2z and s2r are increasing with the size of
the sample. Obtained results were fitted by the power law ALz

suggested by the phenomenological theory of thermal fluctuations
in flexible membranes [48]. Resulting fits are in Fig. 2(b) shown by
the red lines. On the other hand, positions of peaks in the radial
distance distribution function were found to match with the cor-
responding peaks for the perfect static lattice, implying that sam-
ples retain their crystalline ordering. Both this facts are implying
that graphene sheet became rippled, as can be seen from Fig. 2(c)
which shows the state of the supercell, containing 11250 atoms, at
t ¼ 2:9 ns. This figure shows that graphene “landscape” is domi-
nated by three major ripples marked by the red lines.

The accuracy of obtained result was checked by comparison
with the results of Monte-Carlo calculations [22] and with experi-
mental data [49]. Data point reported in the Ref. [22] is shown in
Fig. 2(b) by the solid blue triangle. The variance of the planar vi-
brations s2r ¼ 17:67pm2, is in good agreement with the prediction
of the Debye model (s ¼ 17:37pm2), and with the experimental
data (15.2 pm2). Variance of vibrations in the normal direction s2z ¼
Table 1
: Equilibrium values of components of covariance matrix S, obtained by fitting
procedure. Error terms are standard errors of the fitting procedure.

graphene nanoribbon

s2x (pm2) 17.6716±0.0022 18.1376±0.0007

s2y (pm2) 17.6628±0.0024 35.4455±0.0067

s2z (pm2) 2619.1019±1.6661 3698.1845±2.6935

sxy (pm2) �0.0398±0.0403 0.0246±0.0300

sxz (pm2) 0.3145±0.1411 �0.6065±0.6261

syz (pm2) �0.3351±0.3203 �0.2413±0.6598
2619:10 pm2 is in good agreement with the value reported in the
Ref. [22] (s2z ¼ 3600 pm2). However, both theoretical values are
considerable larger than the corresponding experimental value
(104 pm2).

This large discrepancy can be explained by two factors. We have
found that results of the our Molecular Dynamics simulations are
highly sensitive to the even smallest amount of strain. For example,
shrinking of the computational supercell by 0.4%, due to the
compressive strain in the y direction, leads to the increase of the s2z ,
of more than 13 times. On the other hand, the same amount of
expansive strain decreases s2z only by a factor 1.14, while expansion
of the supercell by 0.5% in both directions decreases s2z by a factor of
2.08. Therefore, we argue that the large observed difference can be
partly explained by the presence of the expansive strain between
graphene and the substrate. Secondly, authors of the Ref. [49]
themselves claim that at temperatures smaller than T � 800 K
there is a significant presence of the surface contaminants which
suppress atom off-planemotionwhile disturb only slightly their in-
plane motion.

In the case of the nanoribbons the covariance matrix S was
calculated following the procedure outlined in the previous para-
graphs, with a fewminor modifications. As already described at the
beginning of this section the second sample contains nanoribons
suspended over the bars of the metallic ladders. Let us assume that
bars are vertical. Nanoribbon then extends in the x direction, while
its atoms are free to move in the y direction. We also assume that
bars strongly suppress the motion of the carbon atoms interacting
with them. Therefore, computational supercell have form of the
rectangular prism of size

ffiffiffi
3

p
N1lex � 3N2ley � cez, which consists of

N1, and N2 unit cells in the x, and y directions, respectively. Hight of
the unit cell c ¼ 4 nm was the same as in previous calculations.
Appropriate boundary conditions are combination of periodic with
frozen boundary atoms in x direction, free boundary condition in
the y direction, and fixed boundary conditions in the direction
normal to the ribbon. We have found that steady state covariance
matrix have form S ¼ diagðs2x ; s2y ; s2z Þ ¼ diagð18:14; 35:45;
3698:18Þ pm2. Double degeneracy of the eigenvalue s2r is now lifted
indicating that carbon atoms now perform fully anisotropic un-
correlated motion, which also leads to the rippling of the nano-
ribbon. Summary of all obtained results can be found also in the
Table 1.

3.2. The transmission rainbow patterns

It has been shown that in general graphene rainbow pattern
consist of two parts. The outer lines formed by protons experi-
encing close encounters with graphene carbon atoms, and the in-
ner lines formed by protons collectively scattered by the graphene
hexagons [5]. The inner rainbows, which give information of the
graphene structure, were studied extensively in the Ref. [5]. In
present paper main focus is on the outer rainbow pattern.

All rainbows will be shown in the transverse plane of the co-
ordinate system attached to the proton beam. It will be shown that,
in this coordinate system, relevant rainbow lines have an elliptical
shape which behaves, in a qualitatively equivalent manner as a
projection of the bilinear form associated with the matrix S�1.
Angular distributions were constructed from 1517 282 proton tra-
jectories which impact parameters uniformly cover the impact
parameter plane.

Figure 3 shows obtained rainbow lines together with corre-
sponding distribution in the case of isotropic thermal vibrations
(s ¼ 17:37 pm2) for normal incidence Fig. 3(a), sample tilted by an
angle Q ¼ 0:065p rad Fig. 3(b), and sample additionally rotated by
an angle F ¼ 0:25p rad Fig. 3(c). Enlarged views of the central parts
of presented images are shown in the corresponding insets in the



Fig. 3. The angular rainbow lines with corresponding angular distributions in the logarithmic scale for isotropic thermal vibrations and in the case of: (a) normal incidence; (b)
sample lilted by an angle Q ¼ 0:065p rad; (c) sample additionally rotated by an angle F ¼ 0:25p rad. Projections of the graphene hexagon on the transverse plane are shown in the
corresponding upper left corners. Enlarged central parts of the distributions are shown in insets in the corresponding upper right corners. Thin dashed blue lines show directions of
carbon atoms in respect to the center of the unit cell. (A colour version of this figure can be viewed online.)
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upper right corners. Projections of the graphene hexagon on the
transverse plane are shown in the corresponding upper left cor-
ners. It is clear that rainbow lines dominantly determine the shape
of the corresponding angular distributions.

Inner rainbow lines in the Fig. 3 of hexagonal shape are labeled
h. In the case of the normal incidence [see Fig. 3(a)] line h have
shape of regular hexagonal with the butterfly-like joining of the
hexagon sides. Rainbow line h in Fig. 3(b) is horizontally down-
scaled by approximately the same factor as a projection of the
graphene on the transverse plane. Two horizontal butterfly-like
joining of the hexagon sides are unaffected while four other are
highly deformed. Analysis have shown that line h in Fig. 3(c) is
deformed and rotated by the same amount as projection of the
graphene on the transverse plane. All butterfly-like joining of the
hexagon sides from the Fig. 3(a) are now reduced to the cusp-
swallowtail combination. Thin dashed blue lines indicate di-
rections of nearest carbon atoms in respect to the direction of the
proton beam. Note that in all cases corners of the line h are directed
toward carbon atoms i.e. it behaves as if being attracted toward
carbon atoms. This figure clearly proves that rainbow line h is
generated by synergetic action of carbon atoms forming graphene
hexagon.

Outer rainbow patterns shown in the Fig. 3 consists of two
perfectly overlapping circular lines both of them labeled c. In the
case of the normal incidence the diameter of the rainbow c is Dc ¼
311.98mrad. For sample tilted by an angleQ ¼ 0:065p rad diameter
of the line c is now Dc ¼ 311.94mrad. Rainbow lines for the sample
tilted by angle Q ¼ 0:065p and rotated by angle F ¼ 0:25p rad
respectively, are shown on the Fig. 3(c). New diameter of the line c
is Dc ¼ 311:92 mrad. Note that outer rainbow lines from Fig. 3(a),
(b), and (c) practically coincide.
Figure 4(a) shows a vertical cross-section through angular dis-
tribution from the Fig. 3(a). Positions of peaks laying on the
rainbow lines h and c are indicated by the arrow-lines, and are
labeled by the same letters. Note the abrupt and large change of the
proton yield in the vicinity of the rainbow lines. This is consequence
of the change of the multiplicity of the mapping q/b characteristic
for the rainbow effect, and because of it rainbow peaks are always
highly asymmetrical. The base of the peak is on the dark side of the
rainbow (where proton density is low) its summit is at the rainbow
line, while its other end is on the light side of the rainbow (where
proton density is high). Note that total variation of the proton
density near rainbow h is considerably larger than near rainbow c.
Interiors of the rainbow lines h and c are their bright sides, while
their exteriors are rainbow dark sides. There are no scattered pro-
tons in the region beyond the rainbow line c. Therefore extent of
the angular distribution is determined by the outer rainbow line c.

It is evident from the Fig. 3 that the proton distributions have
hexagonal shape in the vicinity of the rainbow line h while in the
region near rainbow c their shape is axially symmetric. For inter-
mediary angles the shape of the angular distribution changes
gradually form hexagonal to the circular. Note that in the vicinity of
the graphene hexagon center potential is dominantly determined
by contributions of the 6 atoms at the vertices of the hexagon.
Consequently potential has hexagonal symmetry. Very close to any
vertex graphene potential is dominated by potential of the indi-
vidual atomwhich is axially symmetric. For intermediary distances
from the carbon atom the interaction potential is dominantly
determined by the contributions of its three nearest neighbors, and
resulting potential has a symmetry of a triangle (see Fig. 3(a) in the
Ref. [5]). Observed evolution of the angular distribution corre-
sponds to the change of the symmetry of the graphene potential for



Fig. 4. (a) The vertical slice through angular distribution from Fig. 3(a) where
normalization factor Y0 is 1=mrad2. (b) Filtered iso-level lines of the distribution from
Fig. 3(a) in the vicinity of the rainbow line h. (A colour version of this figure can be
viewed online.)
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point moving from the center of the graphene hexagon to the
carbon atom at the vertex of the hexagon. To demonstrate this fact
we have analysed the iso-level lines of the distribution from the
Fig. 3(a) in the region where mentioned transition happens.
Figure 4(b) shows considered iso-level lines filtered by the low-
pass filter to remove statistical fluctuations and reveal their over-
all shape more clearly. Level lines labeled 1, and 2, the closest to the
rainbow line h, have shape of concave curved hexagon. They are
formed by the protons of impact parameters from the area where
interaction potential is hexagonal. Level lines 3, and 4 have shape of
the curved convex hexagon, while the shape of the level line 4 is
almost circular. Both of them are formed by protons coming from
region of the impact parameter with triangular shape. There are
two such regions in the graphene unit cell which are mirror image
of each other. Their combined effect is the concave hexagonal shape
of the mentioned level lines. The level line 5 has circular shape and
is formed by the protons coming from the regions near carbon
atomswhere interaction potential is axially symmetric. Level values
of the curves shown in the Fig. 4(b) are also shown in the Fig. 4(a) as
horizontal lines, labeled by the same numbers. In the region of
interest the angular distribution is monotonously decreasing
function, without abrupt jumps characteristic for the rainbow ef-
fect. Therefore, observed transition of the shape of angular distri-
bution from hexagonal to the circular is forced by the rainbow
effect but not directly related to it.

Figure 5 shows rainbow lines together with corresponding
angular distribution in the case of infinite perfect graphene sheet
(s2r ¼ 17:67 pm2 and s2z ¼ 2619:10 pm2) for normal incidence
Fig. 5(a), sample tilted by an angle Q ¼ 0:065p rad Fig. 5(b), and
sample additionally rotated by an angle F ¼ 0:25p rad Fig. 5(c).
Enlarged views of the central parts of presented images and pro-
jections of the graphene hexagon on the transverse plane are also
shown. This figure also confirm that rainbow lines determine the
shape of the corresponding angular distributions.

Inner rainbow lines h have the same shape as corresponding
lines from the Fig. 3. Comparison of the Figs. 3(a) and 5(a) reveals
that for normal incidence rainbow lines h almost coincide (areas
enclosed by the lines h differ by less than 0.55%). For the reoriented
sample, the difference between corresponding rainbow lines in
Fig. 5(b) and (c), and their counterparts in Fig. 3(b) and (c) is also
small (corresponding areas enclosed by the lines h differ by less
than 2.3%, and 2.7%, respectively). Note that in-plane vibration
variances are almost equal (s2r ¼ 17:67 and s ¼ 17:37 pm2), while
there is a large difference between variances of the off-plane mo-
tion (s2z ¼ 2619:10 pm2 and s ¼ 17:37 pm2) which should be
visible for tilted sample. This only means that thermal vibrations
have very small influence on proton trajectories which generate
inner rainbow line h.

Outer rainbow pattern for the normal incidence is shown in the
Fig. 5(a). It consists of two perfectly overlapped circular lines
labeled c having diameter of Dc ¼ 261:77mrad. For sample tilted by
an angle Q ¼ 0:065p rad outer rainbow pattern is shown in
Fig. 5(b). It consists of two overlapped elliptical lines labeled e.

Strictly speaking, tilting deforms the circular rainbow c into the
“egg-shaped” curve. To explain formation of this shape let us for a
moment neglect the dynamics in the longitudinal direction. In that
case, momentum approximation applies, and it can be shown that
resulting rainbows have shape of a perfect ellipse (see Appendix A).
Therefore an interplay between dynamics in the longitudinal di-
rection and in transverse plane is responsible for resulting distor-
tion of an ellipse into the observed shape. However, since this
distortion is small we shall refer to rainbows as elliptical.

In order to characterize the shape of the rainbows e in the
simplest manner we have defined the characteristic axes of the
curve as the direction running through curves centroid for which
the difference between original curve and its mirror image is the
smallest. We have examined all elliptical outer rainbows calculated
for this study and find that they have only two characteristic axes.
In the case of the perfect ellipse characteristic axes coincide with
major and minor axes of an ellipse. Major and minor diameter of
the rainbow line are defined as larger and smaller lengths of the
cross-sections along characteristic axes.

Characteristic directions for rainbow e in Fig. 5(b) were found to
point in the vertical and horizontal directions, respectively. Major
and minor diameters were found to be DM

e ¼ 199:93 mrad and
Dm
e ¼ 161:12 mrad, respectively. The difference between diameters

of overlapped rainbows [unobservable in Fig. 5(b)] was found to be
smaller than 0.13mrad and was neglected from the subsequent
analysis. The centroid of the line e is displaced approximatively by
vector Dqc ¼ ð�7:58;0Þmrad away form the direction of the proton
beam. It should be noted that this displacement do not exists in the
momentum approximation, which gives ellipse perfectly aligned
with the proton beam. For the tilted sample in the transverse plane
near carbon atoms proton-carbon interaction potential becomes



Fig. 5. The angular rainbow lines with corresponding angular distributions in the logarithmic scale for infinite perfect graphene sheet and in the case of: (a) normal incidence; (b)
sample lilted by an angle Q ¼ 0:065p rad; (c) sample tilted and rotated by angles Q ¼ 0:065p rad and F ¼ 0:25p rad, respectively. Projections of the graphene hexagon on the
transverse plane are shown in the corresponding upper left corners. Enlarged central parts of the distributions are shown in insets in the corresponding upper right corners. Thin
dashed blue lines show directions of carbon atoms in respect to the center of the unit cell. (A colour version of this figure can be viewed online.)
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asymmetrical which results in the asymmetric scattering angles.
Outer rainbow pattern for the sample tilted and rotated by the

angles Q ¼ 0:065p rad, and F ¼ 0:25p rad is shown in the Fig. 5(c).
It consists of two overlapped elliptical lines labeled e. Characteristic
axes were found to point in vertical and horizontal directions,
respectively. Major and minor diameters were found to be DM

e ¼
200.21mrad and Dm

e ¼ ¼ 160.91mrad, respectively. Origin of the
line e is shifted approximatively by an angle Dqc ¼ ð�7:78;�0:06Þ
mrad. The difference between diameters of overlapped rainbows
[also unobservable in Fig. 5(c)] was found to be smaller than
0.09mrad and was also neglected.

Figure 6 show rainbow pattern together with corresponding
angular distribution in the case of nanoribbons (s2x ¼ 18:14 pm2,
s2y ¼ 35:45 pm2, s2z ¼ 3698:18 pm2) for normal incidence Fig. 6(a),
sample tilted by an angleQ ¼ 0:065p rad Fig. 6(b), and additionally
rotated by an angle F ¼ 0:25p rad Fig. 6(c). Enlarged views of the
central parts of presented images and projections of the graphene
hexagon on the transverse plane are also shown. This figure also
confirm that rainbow lines determine the shape of the corre-
sponding angular distributions.

Note that inner rainbow lines h have the same shape and
approximately the same size as corresponding lines in Figs. 3 and 5.
The difference between sizes of the corresponding areas enclosed
by the lines h from Figs. 3 and Figs. 6, respectively are less then 0.7%,
1.4%, and 2.9%, respectively. This result also confirms that inner
rainbow h is practically insensitive to the thermal vibrations.

Outer rainbow pattern in the case of the normal incidence is
shown in the Fig. 6(a). It consists of the two perfectly overlapped
ellipses labeled e, centered at the direction of the proton beam.
Characteristic directions we found to point in the horizontal and
vertical directions, respectively. Major and minor diameters were
found to be DM
e ¼ 231:97 mrad and Dm

e ¼ 220:39 mrad. For sample
tilted by an angle Q ¼ 0:065p rad outer rainbow pattern shown in
Fig. 6(b) consists of two overlapped elliptical lines labeled e. Its
characteristic directions point in the horizontal and vertical di-
rections, respectively. Major andminor diameters of line e are DM

e ¼
173:23 mrad and Dm

e ¼ 129:58 mrad. The difference between di-
ameters of overlapped rainbows [unobservable in Fig. 6(b)] was
found to be smaller than 0.15mrad and was neglected from the
subsequent analysis. Centroid of the ellipse e was found to be
shifted approximatively by a vector Dqc ¼ ð�5:10;0Þ mrad. For
sample tilted by an angle Q ¼ 0:065p rad and rotated by an angle
F ¼ 0:25p outer rainbow patter shown in Fig. 6(c) consists of two
overlapped elliptical lines labeled e. Its characteristic directions are
orthogonal, and slanted by 103.55mrad off the vertical direction.
Major and minor diameters of the line e were found to be
DM
e ¼ 164:47 mrad and Dm

e ¼ 128:14 mrad respectively. Approxi-
mate displacement of the rainbow e was found to be
Dqc ¼ ð�5:30;�0:80Þ mrad.

To summarize, in all analysed cases shape of the inner rainbow h
reflects the structure of the sample, and is practically unaffected by
the thermal vibrations. In the case of the isotropic thermal vibra-
tions outer rainbow line have shape of a perfect circle regardless of
the sample orientation. In the case of the carbon thermal motion
isotropic in the graphene plane only, sample tilting transforms
circular outer rainbow c for the normal incidence to elliptical line e
which is unaffected by the additional rotation of the sample. In the
case of the most general thermal motion, outer rainbow line always
have elliptical shape. Sample tilt increase its ellipticity, while
additional rotation of the sample tilts rainbow e.

Observed evolution of the outer rainbow lines with rotation
angles behave in the same fashion as the normal projection of the



Fig. 6. The angular rainbow lines with corresponding angular distributions in the logarithmic scale for graphene nanoribbon in the case of: (a) normal incidence; (b) sample lilted
by an angle Q ¼ 0:065p rad; (c) sample tilted and rotated by angles Q ¼ 0:065p rad and F ¼ 0:25p rad, respectively. Projections of the graphene hexagon on the transverse plane
are shown in the corresponding upper left corners. Enlarged central parts of the distributions are shown in insets in the corresponding upper right corners. Thin dashed blue lines
show directions of carbon atoms in respect to the center of the unit cell. (A colour version of this figure can be viewed online.)
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ellipsoid associated with the matrix S�1 ¼ diagðs�2
x ;s�2

y ;s�2
z Þ. For

isotropic thermal vibrations projection of the ellipsoid S ¼ sI is
always a circle. In the case of infinite graphene sheet, ellipsoid
S�1 ¼ diagðs�2

r ; s�2
r ; s�2

z Þ have two large semi-axes s�2
r and the

third small s�2
z . For normal incidence its projection is a large circle.

For any other orientation its projection is a smaller ellipse. In the
case of graphene nanoribbon matrix S�1 ¼ diagðs�2

x ; s�2
y ;s�2

z Þ
have two large semi-axes s�2

x , and s�2
y , and one small s�2

z . For
normal incidence projection of the ellipsoid is a large ellipse. For
any other orientation its projection is a smaller tilted ellipse.
3.3. Extraction of the covariance matrix from the rainbow patterns

In this section it will be shown that there is one-to-one corre-
spondence between parameters of the outer rainbow lines and
covariance matrix, which allow unambiguous extraction the
covariance matrix for the outer rainbow patterns even in the gen-
eral case when atoms move in fully anisotropic and correlated
fashion.

We will assume that direction of the normal to the graphene
sample is known in advance. Additionally we assume that matrix S

is full, symmetric and positive definite. By suitable rotation this
matrix can be transformed into the diagonal form
S ¼ diagðs2x ; s2y ; s2z Þ i.e it is possible to find a coordinate system in
which thermal vibrations are uncorrelated. In general there are
three types of rotationally nonequivalent matrix formes: the
isotropic S ¼ sI, planar S ¼ diagðs2r ;s2r ;s2z Þ, and uncorrelated S ¼
diagðs2x ; s2y ; s2z Þ. This classification correspond to the number of
distinct eigenvalues in the matrix spectrum. Eigenvectors of the
matrix S define three orthogonal characteristic directions associ-
ated with corresponding eigenvalue.
Bearing in mind the evolution of the rainbow lines presented in
the previous section it is relatively easy for the experimentalist to
recognize the type of S he is dealing with. If covariance matrix is
isotropic (S ¼ sI) then for the arbitrary orientation of the sample
experimentalist would see circular rainbow. Therefore, the diam-
eter of the rainbow Dc can only depend on the variance s. The curve
representing dependency DcðsÞ in Fig. 7(a) is obtained by interpo-
lation of diameters obtained by numerical simulation for 10 equi-
spaced s values. Minimal considered value of 15.20 pm2

correspond to thermal vibration variance at the temperature of
absolute zero which was calculated according to Eq. (13). Maximal
considered value was 20.6 pm2. Squaremarker indicate diameter of
the rainbow Dc ¼ 311:98 mrad form the Fig. 3(a). Since obtained
curve is monotonically decreasing “unknown” value for s of the
17.37 pm2 can be simply read from the graph.

In the case of planar matrix S ¼ diagðs2r ; s2r ; s2z Þ for arbitrary
sample orientation experimentalist would observe an ellipse.
When proton beam is alignedwith the third characteristic direction
the ellipse transforms into the large circle. Note that in the refer-
ence frame attached to the proton beam major and minor axes of
the ellipse always correspond to the vertical and horizontal cross-
sections. Therefore, diameters of ellipses DM

e , and Dm
e depend on

s2r , s
2
z and a polar angleQ. To find two unknown eigenvalues s2r , s

2
z

at least two different measurements are required. For simplicity we
will use the diameter of the circle Dc from Fig. 5(a) and the minor
diameter of the ellipse Dm

e from Fig. 5(b). Note that this choice fixes
values for the angle Q, and produce a system of equations Dcðs2r ;
s2z Þ, Dm

e ðs2r ;s2z Þ, depending only on two unknown variances.
In principle it is possible to perform calculations for arbitrary

point in the ðs2x ; s2z Þ space and determine Dc and Dm
e . However, such

direct evaluations are impractical. We have noticed that the



Fig. 7. (a) Dependency of the rainbow diameter Dc on the variance s2, in the case of
the normal incidence. Square marker indicate diameter of the rainbow c form the
Fig. 3(a). (b) Blue lines represent level lines of the rainbow diameter Dcðsr; szÞ in the
case of normal incidence. Red lines represent level lines of rainbow minor diameter
Dm
e ðsr; szÞ for the sample tilted by the angle Q ¼ 0:065p rad. Boundaries of the domain

are shown by dashed blue lines. Level values are expressed in mrad. Thick blue and red
lines show corresponding diameters of the rainbows c and e form the Fig. 5(a) and (b)
respectively. (A colour version of this figure can be viewed online.)

Fig. 8. The blue, red and green lines represent cross-sections through level surfaces of
the rainbow diameter DM

e ðsx ; sy ; szÞ in the case of normal incidence D m
e ðsx; sy ; szÞ in

the case of sample tilted by the angle Q ¼ 0:065p, and DM
e ðsx; sy; szÞ in the case

sample additionally rotated by the angle F ¼ 0:25p, respectively, for: (a) sx ¼
30:00 pm2, (b) sx ¼ 35:45 pm2, and (c) sx ¼ 40:00 pm2. Boundaries of the domain are
shown by dashed blue lines. Level values are expressed in mrad. Thicker blue and red
lines show corresponding diameters of the rainbows from the Fig. 6(a), (b) and (c)
respectively. (A colour version of this figure can be viewed online.)
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dependence of the functions Dcðs2r ; s2z Þ, Dm
e ðs2r ; s2z Þ on s2z is very

weak in the domain ½15:2;20:6� pm2 � ½2000;4000� pm2. This fact
vas be exploited to considerably reduce a number of the required
calculation. Values of Dc and Dm

e were determined only on appro-
priately chosen grid having 81 points in the total. We have found
that 2D interpolation gives desired values of the functions Dcðs2r ;
s2z Þ, Dm

e ðs2r ;s2z Þ at arbitrary point in the domain with excellent
accuracy.

Figure 7(b) show numerically obtained level lines of functions
Dcðs2r ; s2z Þ and Dm

e ðs2r ; s2z Þ. Blue and red lines show equi-diameter
level lines of the functions Dcðs2r ; s2z Þ, and Dm

e ðs2r ; s2z Þ respectively.
Thicker contours correspond the diameters of rainbows c and e
form Fig. 5(a) and (b), respectively. Note that for each level there is
only one level line, and their intersections contain maximally one
point. Thus, intersection of level lines corresponding to the pair ðDc;

Dm
e Þ ¼ ð261:77;161:12Þ mrad contains only one point namely ðs2r ;

s2z Þ ¼ ð17:67;2619:10Þ pm2.
In the case of generic covariance matrix S ¼ diagðs2x ; s2y ; s2z Þ for

arbitrary sample orientation experimentalist would observe a tilted

ellipse. Now diameters of an ellipse DM
e , Dm

e , and a tilt angle J are

function of three variances s2x ,s
2
y , s

2
z and two angles Q, and F.

Determination of the unknown eigenvalues s2x ,s
2
y , and s2z now re-

quires at least three different measurements. For simplicity we

chose the major diameter DM
e of the ellipse from the Fig. 6(a), the

minor diameter Dm
e of ellipse form Fig. 6(b), and themajor diameter

DM
e from the Fig. 6(c), relabeled DM

e , D m
e and DM

e , respectively, for
this purpose. This choice of sample orientations produces the sys-

tem of equation DM
e ðs2x ; s2y ; s2z Þ, D m

e ðs2x ; s2y ; s2z Þ and DM
e ðs2x ; s2y ; s2z Þ

depending only on the three unknown variances. For this functions
set of equivalue points form surfaces in the three dimensional space
which can't be represented easily on two dimensional sheet of the
paper. Therefore, for simplicity Fig. 8(a), (b), and (c) show only three

slices through level surfaces corresponding to the s2y ¼ 30:00 pm2,
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s2y ¼ 35:45 pm2, and s2y ¼ 40:00 pm2, respectively, obtained
applying the same procedure described earlier. Level lines of the

functions DM
e ,D m

e , andDM
e in the s2x , s

2
z subspace are shown by red,

green and blue lines respectively. The ticker contours correspond to
the chosen values of diameters from Fig. 6(a), (b), and (c), respec-
tively. This figure shows that for each level, in any slice there is only
one level line. Intersection of arbitrary three level lines contains
only one point. Therefore level lines corresponding to the triple

ðDM
e ;D m

e ;D
M
e Þ ¼ ð231:97;129:58;164:47Þ mrad meet only at the

point ðs2x ; s2y ; s2z Þ ¼ ð18:14;35:45;3698:18Þ pm2 which is shown in
the 8(b).

Since goniometer position and direction of the normal to the
graphene are know, it is straightforward to construct the rotation
matrix which will align third characteristic direction with the
normal to the graphene sheet. This rotation transformmatrixS into
Swhich is in general full and symmetric. Therefore, it is possible to
extract variances and correlation coefficients of the graphene
thermal vibrations from the measurements of rainbow lines alone.

The error of the described procedure for measurement of the
covariance matrix S have two main contributions. The first
component is the systematic error related to the adopted model of
the proton-carbon interaction potential which is additionally
averaged in order to include effect of the thermal vibrations.
Thermal averaging of the potential has been tested numerous
times. It is a standard assumption used in interpretation of the X-
ray or neutron scattering experiments. The choice of the appro-
priate proton-carbon interaction potential is more important.
Earlier we have also shown that shape and the extent of the
rainbow line h are very sensitive to the choice of the interaction
potential [5]. In the Sec. 3.2 we have shown that inner rainbow
pattern is practically insensitive to the carbon thermal vibrations.
Therefore, it is in principle possible to use rainbow lines to extract
the correct proton-carbon interaction potential on the similar lines
as suggested in the Ref. [9]. We can safely assume that systematic
error is small.

The second contribution to the error of the described procedure
is experimental uncertainty of the position of the rainbow lines.
Various physical processes such as: energy loss, fluctuations of the
scattering angle, beam divergences influence the experimental
width of the rainbow lines. It has been shown that dominant
contribution to the width of the rainbow lines comes form the
angular divergence of the proton beam [5]. Therefore the total error
can be kept under control if one have sufficient control of the
proton beam angular divergence.
4. Conclusions

In this paper we have explored in detail the relation between
graphene carbon atom thermal motion and the corresponding
angular rainbow pattern. Thermal effects were incorporated by
averaging the proton-carbon interaction potential over the distri-
bution of thermally induced atom displacements. The covariance
matrix of the thermal vibration was modeled according the Debye
model and calculated using molecular-dynamics approach. It was
shown that these models cover all possible cases of the carbon
atom thermal motion.

We have shown that rainbow pattern consists of two parts, the
inner and outer one. The inner pattern, which gives information
about graphene structure, is unperturbed by atom thermal vibra-
tions, and the outer patternwhich gives information about thermal
motion of individual atoms. Is found that outer rainbow line can be
modeled by an elliptical line, which behaves in a qualitatively equal
manner as a normal projection od the ellipsoid associated with
matrix S�1. At the end we have shown that rainbow pattern
uniquely determine matrix S when atom perform fully anisotropic
and correlated motion.

Results of this study are directly applicable for measurements of
the ripplings of graphene and can be used for other similar layered
materials. Generally speaking, this approach is applicable even
when a priory assumption of the matrix S form is unavailable. We
are convinced that possibility to obtain information about crystal
structure together with information about atom thermal motion
represents a significant contribution to the field. Also possible
application of the method presented here would be determination
of temperature dependence of the covariances matrix S.
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Appendix A. Momentum approximation

In this section we will construct the simple model of the outer
rainbows, based on the momentum approximation. Transverse
plane of the Descartes coordinate system is attached to the gra-
phene plane. Direction of the proton beam is specified by polar
angle Q and azimuthal angle F.

Outer rainbows are generated by protons experiencing close
collisions with carbon atoms. In this region Doyle-Turner's proton-
carbon interaction potential reduces to the following form.

VðrÞ ¼ V0 þ a exp
�
� 1
4
rT,Y�1,r

	
; (A.1)

where V0 is a constant, a, and b are effective fitting parameters, Y ¼
bIþ 1

2S,S ¼ diagðs2x ;s2y ;s2z Þ, and r ¼ ðx;y;zÞ. It should be noted that
potential (A.1) is accurate only in the designated area. We also as-
sume that influence of the neighbouring atoms on the outer rain-
bows can be neglected. In the coordinate system attached to the
proton beam the proton-carbon interaction potential is given by the
Eq. (A.1) wherematrixS is replaced by its rotational equivalentS ¼
RzðFÞTRyðQÞT,S,RyðQÞRzðFÞ, Rz, and Ry stand for rotational
matrices around y and z axes, respectively. Scattering angles in the
momentum approximation are given by the relation

q ¼ � 1
2E

Vr

ð
VðrÞdz; (A.2)

where q ¼ ðqx;qyÞ, r ¼ ðx;yÞ, Vr ¼ ðvx;vyÞ, and Ek is proton kinetic
energy. Expression on the right hand side of the Eq. (A.2) can be
evaluated analytically, giving for the scattering law the following
expression

http://hybrilit.jinr.ru/
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q ¼ � a
4E

B,r exp
�
� 1
4
rT,B,r

	
; (A.3)

where a ¼ aðu det YÞ�1=2, and B ¼ Uþ 1
ug,g

T is the projection of
the matrix

Y�1 ¼
�
U; g
gT ; u

	
: (A.4)

in the x, y subspace. Scattering law (A.3) define a mapping of the
impact parameter plane r to the scattering angle plane q. According
the Ref. [1] rainbow lines in the impact parameter plane are sin-
gularities of the Jacobian matrix JqðrÞ associated with the mapping
r/q

det JqðrÞ ¼ det B
a2

4
� det B

a2

4
rT,B,r ¼ 0; (A.5)

which are laying on the ellipse

rT,B,r ¼ 1: (A.6)

Rainbow line in the scattering angle plane is also ellipse defined
by equation

qT,B�1,q ¼ a2e2

16E2k
(A.7)

where e is base of the natural logarithms. Final results have simple
geometrical interpretation. It is easy to prove that ellipse rT,B,r ¼
1 is normal projection of the ellipsoid rT,Y,r ¼ 1: Note that shape
of the ellipse is dictated by the structure of the matrix S, since Y ¼
bI þ 1

2S and bI is rotationally invariant matrix. WhenmatrixS have
only one triplye degenerate eigenvalue, projected ellipse is actually
a circle. If matrix S have only two distinct eigenvalues, then normal
projection is an ellipse in canonical form. If spectrum of the matrix
S consists of three distinct eigenvalues, then normal projection is a
tilted ellipse. Similar conclusions holds for angular rainbow line,
which are scaled normal projection of the ellipsoid associated with
the matrix Y�1.
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