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A B S T R A C T   

Plastic recycling technologies are being actively developed and implemented to cope with increasing volume of 
plastic. Such technologies require new analytical tools able to control the quality of the recycled polymers to be 
further integrated in production processes. Here, we propose a rapid and selective quality assessment method for 
polymer materials made of high-density polyethylene using electronic nose with aluminum doped zinc oxide 
sensing material in combination with the RandomForestClassifier machine learning tool. We test total content of 
volatile organic compounds both odor-active responsible for the smell and odorless of primary and secondary 
plastics, and evaluate corresponding organic vapors emitted by the plastics by headspace gas chromatography 
and mass-spectrometry at optimized conditions like sample temperature, sensor signal recovery time. The 
electronic nose demonstrated the good correlation of vector signal with the emitted volatile compounds with an 
accuracy more than 98.5% when discriminating between primary and secondary plastics. Addition of zeolites to 
the recycled plastic is shown to decrease the appearance of off-odors.   

1. Introduction 

Severe use of plastic (Khanam and AlMaadeed, 2015; Mark, 2007; 
Sangroniz et al., 2019; Seitz, 1993; World et al., 2018), even though it is 
deeply incorporated in daily life, leaves a huge mark on the landscape of 
the Earth. The annual consumption of polymer composites reaches 
about 260 megatons according to a 2020’s report (‘Polymer Market 
Analysis: Plant Capacity, Production, Operating Efficiency, Demand & 
Supply, Product Type, Application, Distribution Channel, Region, 
Competition, Trade, Market Analysis, 2015–2030’, 2021), with a pro-
jected increase to 430 megatons by 2030. Such a massive increase in 
polymer production to meet the growing demand of the Earth’s 

population makes a major impact on soils (Chae and An, 2018; Nel and 
Froneman, 2015), marine waters (Pabortsava and Lampitt, 2020), and 
mammals (Yates et al., 2021) with plastic residuals found even in human 
blood (Leslie et al., 2022). At the same time, the share of recycled 
plastics (Häußler et al., 2021; Rahimi and Garciá, 2017; Rajendran et al., 
2012) is only 14% of the total consumption, while the rest goes to the 
polymer waste (Zheng and Suh, 2019), although the part of potentially 
recyclable plastics is higher than 80% of the total amount of produced 
plastics (Patoski, 2019). The insufficient recycling of plastics is on top of 
this problem affecting the quality of the sanitary and epidemiological 
state of the final product (Hahladakis et al., 2018; Nerín et al., 2016). A 
great amount of unrecycled plastics envelops a “Plastic waste Era” (Ball, 
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2020; Van Rensburg et al., 2020) of our civilization. To be harmonized 
by recycling protocols, we should develop methods of rapid and precise 
analysis of the quality of polymeric materials (Lok et al., 2020; 
Schwartz-Narbonne et al., 2023), especially when they are utilized in the 
food and pharmaceutical industries (Garcia and Robertson, 2017; 
Vollmer et al., 2020). 

Quality control methods of polymers are prescribed by regulations 
and acts of food and drug administration agencies, in particular by US 
FDA (‘Recycled Plastics in Food Packaging’, 2020), and based on 
internationally certified standards like ISO (ISO/DIS 5677 Testing and 
characterization of mechanically recycled Polypropylene (PP) and Poly-
ethylene (PE) for intended use in different plastics processing techniques, 
2022, ISO 13741-1:1998 Plastics/rubber — Polymer dispersions and rubber 
latices (natural and synthetic) — Determination of residual monomers and 
other organic components by capillary-column gas chromatography, 1998, 
ISO 3251:2019 Paints, varnishes and plastics — Determination of 
non-volatile-matter content, 2019). Gas chromatography (Demets et al., 
2020; Vera et al., 2020) with various detection options as well as IR 
spectroscopy (Giron and Celina, 2017) are often employed for the 
assessment of the plastic quality. These methods enable the evaluation 
of vapors that constitute a smell of plastics, an important quality char-
acteristic, especially in the case of secondary plastics. For example, the 
smell of waste plastics was tested by using three sampling methods such 
as solid–phase microextraction and two different purge and trap 
methods, based on sampling on the activated charcoal followed the 
carbon disulfide desorption or on the Tenax-TA followed the thermal 
desorption technique, to be further analyzed by gas chromatography on 
pair with mass spectrometry (Demets et al., 2020). The appearance of 
off-odors related to primary and secondary plastics, both as-recycled or 
in a compound, can be also evaluated by trained personnel, i.e. a panel 
of experts. 

An objective analysis of plastic smell might be conducted using gas 
analytical units like “electronic noses”, or e-noses (Cabanes et al., 2020; 
Wiedmer et al., 2017), as it is often applied for food quality control 
(Fedorov et al., 2021; Tan and Xu, 2020), electronic sommelier (Vera 
et al., 2010; Yu et al., 2014), classification of close homologs and iso-
mers (Goikhman et al., 2022), etc. The electronic nose usually represents 
an array of sensors with good cross-sensitivity those vector signal, when 
processed by pattern recognition algorithms, e.g., using machine 
learning, is specific to an analyte or mixture. Accordingly, the operation 
of the e-nose is designed to be similar to the mammalian olfactory sys-
tem (Gardner and Bartlett, 1994; Han et al., 2022; Persaud and Dodd, 
1982; Potyrailo, 2016) with the difference that the e-nose sensors give a 
response to the total content of volatile substances they are sensitive to 
when compared to the mammalian nose, which is able to recognize only 
odor-active volatiles that specifically bind to proteins in the nasal mu-
cosa (Buck and Axel, 1991; Pelosi, 1996). E-nose offers primarily good 
selectivity, low power consumption, especially for on-chip-made sensor 
arrays, and rather good rapidness of control. 

The VOCs analysis of PET-based primary plastic was first conducted 
by Torri et al., who studied 25 homo- and copolymers of ethylene and 
five homo- and copolymers of polypropylene with a commercial e-nose 
based on 10 metal oxide sensors (Torri et al., 2008). The authors 
demonstrated confident discrimination between polymer samples based 
on different amounts of emitted volatile compounds using principal 
component analysis (PCA). Semiconductor mono- (Bigger et al., 1996) 
and multisensor systems (Van Deventer and Mallikarjunan, 2002; Yüzay 
and Selke, 2007) were implemented also for the smell analysis of 
low-density polyethylene films in conjunction with an alternative 
assessment by the sensory expertise. An E-nose system based on 8 
piezoelectric quartz resonators was also applied to monitor the degra-
dation of primary OXO-biodegradable polyethylene films when exposed 
to UV and temperature (Kuchmenko et al., 2020). The authors were able 
to selectively discriminate the OXO-polyethylene film degradation de-
gree by using PCA, which is related to the appearance of volatile organic 
compounds (VOCs) due to the employed prooxidant additives. Recently, 

Oleneva et al. described an application of e-nose to check the toxicity of 
plastic toys, showing an accuracy of around 96% (Oleneva et al., 2020). 

However, an analysis of components of the plastic smell and its 
emission versus e-nose selective assessment has not been yet properly 
performed. Moreover, the smell of secondary plastics, including the 
plastic compounds with added odor adsorbers, has not yet been exam-
ined by this technique. 

Thus, in our study, we propose an approach for assessment of the 
quality of recycled plastics using e-nose followed by smell classification 
on the basis of machine learning protocols. We demonstrated the high 
sensitivity of sensors and selective discrimination of smells of polymer 
samples relative to synthetic air at different temperatures. The accuracy 
of the classification results for the Random Forest algorithm (Xu et al., 
2019) was above 98.5%. We also presented that the maximum recog-
nition coefficient (1.0 for pairwise recognition between 3 polymers and 
synthetic air) between polymer classes is typical for the room temper-
ature analysis, which enhances the advantages regarding the simplicity 
and rapidness of this approach in comparison with ISO standards. 
Therefore, our approach opens a new avenue for simple and rapid 
control of the primary and secondary plastics for the food and phar-
maceutical industries. 

2. Materials and methods 

2.1. Synthesis of functional material 

We chose an aluminum-doped zinc oxide (Al-doped ZnO), a trans-
parent and conductive material (Bo et al., 2020), due to its proven good 
sensing properties (Sanger et al., 2019; Van Toan et al., 2021). The 
synthesis of Al-doped ZnO is described elsewhere (Fedorov et al., 2022; 
Goikhman et al., 2022). Briefly, to synthesize Al-doped ZnO, we utilized 
aqueous Zn(NO3)2⋅6H2O (98%, Khimmed, Russia) and Al(NO3)3⋅9H2O 
(98%, Khimmed, Russia) maintaining a total concentration of Zn2+ and 
Al3+ ions to be 0.3 M in a ratio to get ZnO - 1.5% Al2O3 composition. An 
aqueous 5 wt% solution of NH3⋅H2O (28–30 wt%, Sigma-Aldrich) was 
added at a temperature of 25 ◦C at a constant rate of 50 μL/s using 
automatic high precision potentiometric titrator ATP-02 (Aquilon JSC, 
Russia) to ensure a reproducible precipitation process (until reaching 
pH = 8, which ensures complete conversion of the used salts with the 
formation of corresponding hydroxides). The sediment was centrifuged 
at 15000 rpm for 10 min (Elmi СМ-50 centrifuge, ELMI laboratory tech-
nology, Latvia), washed with deionized water (after supernatant 
removal, the sediment was washed three times with the volume of 
deionized water similar to the volume of supernatant) and dried at 
100◦С for 3 h following the annealing at 350 ◦C for 1 h in air. 7 μL of 5% 
dispersion of the obtained Al-doped ZnO particles in a mixture of ethanol 
C2H5OH (95%, Sigma-Aldrich) with deionized water H2O (νC2H5OH/νH2O 
= 1) was drop-cast on multisensor chip and then dried at ca. 80 ◦C. 
Scanning electron microscopy images of the deposited Al-doped ZnO 
sensing layer at the chip were acquired using FEI Teneo VolumeScope (FEI 
Comp., the USA) at 20 kV. The images are presented in Fig. S1 in the 
Supplementary Materials. 

2.2. Polymer characterization 

In this study, we evaluated the smell of polymer samples based on 
high-density polyethylene: Sample #1 is a copolymer of ethylene with 
hexene-1; Sample #2 is a recycled polymer with an adsorbent additive to 
eliminate the influence of VOCs, i.e., off-odors; Sample #3 is a recycled 
polyethylene sample. As an adsorbent additive, we applied zeolites (K. 
P. Veerapandian et al., 2019; Keshavarzi et al., 2015; Li et al., 2021) with 
a concentration in the range from 0.1 to 2.0 wt %. The plastic samples 
are represented by cylindrical granules with a length of ~5 mm and a 
diameter of ~1 mm. 

The appearance of emitted compounds was tested using simulta-
neous thermal analysis, i.e., by differential scanning calorimetry (DSC) 
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and thermogravimetric analysis (TGA) coupled with mass spectrometry 
(STA-MS). The tests included gradual heating from 30 ◦C to 500 ◦C at a 
rate of 5 ◦C per minute in synthetic air. The measurements were carried 
out using an STA 449 F3 Jupiter® simultaneous thermal analysis device 
combined with a QMS 403 Aёolos Quadro quadrupole mass spectrometer 
(NETZSCH Gerätebau GmbH, Germany). For the measurements, the 
material was encapsulated in an aluminum crucible. A silicon carbide 
furnace was chosen for the experiments. We evacuated the device prior 
to each experiment. 

We further performed gravimetric tests for these polymers after 
keeping them under isothermal conditions at temperatures of 50 ◦C, 
75 ◦C, and 105 ◦C for 24 h, respectively. The experiment was carried out 
using the UT-4630V installation (ULAB, China) at ambient pressure. The 
polymer samples in granules (m ≈ 15 g) were placed in aluminum boats 
and then exposed to elevated temperatures. 

Also, we applied a gas chromatograph Agilent 7890А (Agilent Tech-
nologies, USA) with a mass spectrometric detector 5975С and a head-
space sampler Agilent HS 7697A for the qualitative assessment of the 
content of VOCs in the plastic samples. The polymer granules (m =

10.0 g) were loaded into a vial (the volume is 20 ml), and the sample 
was thermally equilibrated for 20 min at 70 ◦C. Then the vapor phase 
was analyzed once. Each chromatographic peak was indexed using 
NIST17 mass spectra database to get the qualitative mixture composi-
tion. The relative content of each component in the gas mixture is 
estimated by the normalization of the chromatographic peak area. An 
unidentified component was a compound whose mass spectrum match 
was not found in the NIST17 database and/or the probability of its 
match with the NIST17 library was less than 80%. 

The qualitative analysis of the polymer samples was made by Raman 
spectroscopy at λ = 532 nm excitation wavelength and the power of 1 

mW with x50 objective using DXR™  xi Raman Imaging Microscope 
(ThermoFisher Scientific, Waltham, MA, USA). Also, the semi-quantitative 
analysis was performed by FT-IR spectroscopy using VERTEX 70v FT-IR 
Spectrometer (Bruker, USA). For each polymer sample, we obtained the 
attenuated total reflection spectrum (64 scans) in the wavenumber 
range of 3500–600 cm− 1 with a resolution of 2 cm− 1. 

We used a sensory evaluation method, based on two consecutive tests 
of polymer vapor inhalation by an expert panel of 6 people, as a 
comparative method for analyzing the plastic odors of the studied 
samples. The panel experts are chosen among the people without bad 
habits and respiratory diseases. 

The samples with a mass of ~100 g were preliminarily kept in glass 
flasks with a volume of 500 ml at (23 ± 2)◦C for 24 h. Each polymer 
sample is estimated by the expert panel against the empty glass flask. 
The first assessment is given immediately upon opening the sample flask 
(1st score). Then the sample is aerated by vigorously shaking the open 
flask, and the second assessment is carried out (2nd score). The results of 
each panel experts were protocoled with a gradation of plastic odors 
according to a 7-point scale, where 1 point is no odors (no difference 
between the sample flask and empty one) and 7 points is a strong odor 
(obvious and significant differences between the flask and empty one). 
The 1st and 2nd scores are taken as the arithmetic mean of the odor in-
tensity for each test separately obtained from 6 experts. If the scores 
were contrary, the procedure of the assessments was repeated. 

2.3. Multisensor chip 

In this study, we utilized a multielectroded chip, made of a thermally 
oxidized Si wafer. The chip size is 10 × 10 mm2. SiO2 layer thickness is 
about 300 nm. On the top of this layer, we realized 18 strip co-planar 

Fig. 1. Design of a setup for estimating the food plastic odors using an Al-doped ZnO-based electronic nose: (a) scheme of a gas-analytical system; (b) illustration of 
the sensor chip operation when exposed to organic impurities from the polymer granules with further classification of the responses by pattern recognition methods. 
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electrodes to be covered with an Al-doped ZnO sensing layer, two 
meander thermoresistors, and two meander heaters to control the tem-
perature (Fig. 1). The electrodes are made of Pt (150 nm) on Ti adhesive 
layer (5 nm) using magnetron sputtering. Each pair of electrodes is 
distanced by 50 μm and can be regarded as a sensor, or a sensor segment 
of the multisensor chip. The chip temperature was calibrated with an IR 
pyrometer Kelvin Compact 1200D (“Euromix” CJSC, Russia) and 
maintained with an accuracy of ±5 ◦C. Prior to the measurements, we 
stabilized the chip at 300 ◦C for 24 h. 

The chip was installed into a ceramic card which was connected to an 
electric board to control the temperature and record sensor segments’ 
resistance. Our pre-experimental tests suggested the optimum temper-
ature to be 250 ◦C. All the data are given for the chip with 9 operating 
segments. 

2.4. Gas-mixing setup and sensor performance 

The chip performance was evaluated in a chamber, 0.76 cm3, where 
a stable flow of 200 sccm was maintained. We supplied synthetic air at 
(23 ± 0.5) ◦C from the pure air source. The synthetic air was forwarded 
into two lines passing mass flow controllers, MFCs (Bronkhorst®, the 
Netherlands), as shown in Fig. 1a. The first line was used to measure the 
sensors’ resistance in the base atmosphere, i.e., contained only synthetic 
air. The other line ensured the measurements of the polymer odors. A 
weighted amount of polymer granules (m ≈ 15 g) was placed in a steel 
container, which is incorporated in this line, with a disposable 
aluminum crucible. The temperature of the container was controlled by 
a heater with feedback managed by means of a thermocouple placed 
inside the container. An airflow of 200 sccm was passing through the 
chamber with a polymer sample in all experiments. At high tempera-
tures, polymers tend to emit smells rather intensively which might result 
in exceeding our electric board’s measurable range of resistance. In 
order to decrease the vapor concentration, we diluted it by the synthetic 
air flow using the third line. As two lines provide the total flow of 200 
sccm passing through the chamber with e-nose, we diluted the vapor 
concentration by a factor of 4 times at 50 ◦C and by a factor of 20 for 
75 ◦C pumping out a part of the flow passed through the chamber. The 
pumped-out flow was compensated by the air from the third line. 
Finally, the lines were forked using an automatic switch valve to be 
forwarded either to a chamber with the chip or to the exhaust. 

Our protocol included exposure of the chip for 20 min to the syn-
thetic air, then to air passed through the polymer granules for 2 min and 
then switching the flow to the synthetic air for 4 min. The time of 
exposure of the chip to the synthetic air of 20 min was chosen as an 
optimal one from two points of view: first, for ensured the removal of 
residual volatiles left from the previous test, i.e., the plastic samples 
have different VOC content and, as a consequence, the different recovery 
times of sensor response to the pre-test values; second, to reach the solid 
phase/gas phase equilibrium for the new sample in the test cell under 
dynamic conditions. 

For the description of sensing performance, we calculate the chem-
iresistive response, S, facilitated by the appearance of vapors in the air: 

S= f ⋅ΔR
/

Rsample, (1)  

where Rsample [MΩ] is the average resistance of the sensor segments in 
the polymer-related VOCs atmosphere and ΔR [MΩ] = Rair – Rsample 
represents the change in the resistance due to the difference in polymer- 
related VOCs resistance (Rsample) and average resistance in the back-
ground air (Rair), f is a dilution coefficient, equaled 0.05, 0.2 and 1.0 for 
the temperatures 75, 50 and 25 ◦C, accordingly. The average resistance 
values of the sensor segments were collected from the last 10 and 100 
points before changing the type of atmosphere for Rsample and Rair, 
respectively, provided that the relative standard deviation sr of the 
studied point sampling was no more than 5%, i.e., when resistance 
values are stabilized due to saturation at a given concentration of 

volatile vapors. If this value was higher, then the point sampling was 
reduced until the desired sr value was obtained. For a clear representa-
tion of the resistance transients, we use the normalized resistance, which 
is the segment resistance divided by Rair (Fig. 1b). 

As an alternative method for the analysis of polymer odor profiles, 
we used a mass spectrometer with a quadrupole mass analyzer Universal 
Gas Analyzer UGA-100 (SRS, USA). The mass spectrometric analysis was 
carried out simultaneously with e-nose tests/data acquisition. 

2.5. Data analysis 

To analyze and classify the multivariate data (n = 9) of sensor re-
sponses to VOCs from the polymers, we applied pattern recognition 
approaches, such as principal component analysis (PCA) and linear 
discriminant analysis (LDA), and Random Forest algorithm. 

PCA is a statistical method to reduce the dimensionality of data 
(Jackson, 1991). The calculation of the principal components can be 
reduced to the singular value decomposition of the data matrix, or to the 
eigenvectors and eigenvalues of the covariance matrix of the original 
data (Tharwat, 2016). The approach allows one to discard less signifi-
cant features in sensor responses by directing the axes of the principal 
components along the maximum scatter of the data variance. Thus, it 
helps to display the space of high metrics in the Cartesian coordinate 
system. However, PCA does not provide a predictive estimate for closely 
spaced clusters of response data. For a comparative evaluation of this 
approach and data processing protocols with the preliminary training, 
we employed the supervised methods of linear discriminant analysis 
(LDA) and Random Forest machine learning algorithm. 

LDA is a generalization of Fisher’s linear discriminant (Fisher, 1936) 
to find a linear combination of features that describes or separates two or 
more classes (Izenman, 2013; Tharwat et al., 2017). The resulting 
combination can be used as a linear classifier, or, more commonly, for 
dimension reduction before the classification. The second approach is a 
machine learning algorithm based on the Decision Tree model. The main 
idea is to use a large ensemble of decision trees; each tree gives a not 
good quality of classification, but due to their large number, the accu-
racy result gets better (Breiman, 2001; Breiman et al., 1984). 

Thus, in order to classify the obtained data, the PCA and LDA ap-
proaches were compared for the dimension reduction and data clus-
tering, and then we applied the Random Forest classification algorithm 
for the plastics recognition. The models of the PCA and Line-
arDisciminantAnalysis classifiers and the RandomForestClassifier machine 
learning protocol were implemented from the Scikit-learn Python pack-
age (version 1.0.2) with default settings (Pedregosa et al., 2011; Raschka, 
2015). For the classification algorithm, sensor response data for 3 types 
of plastics and synthetic air were used, and this data has been divided 
into train and test datasets in a ratio of 0.35–0.65, respectively. The 
selection of optimal parameters for obtaining high accuracy of plastics 
recognition in a multidimensional response space was carried out using 
the GridSearchCV package of the Scikit-learn software library. 

2.6. Correlation and regression “Al-doped ZnO e-nose vs sensory 
evaluation” 

To estimate the ability of the Al-doped ZnO e-nose to predict the 
sensory characteristic of primary and secondary polymers we addi-
tionally analyzed their possible relation. We collected the chemiresistive 
responses data for the 17 food plastics and polymer compounding 
products using an Al-doped ZnO e-nose based on an array of 11 sensors. 
For each of the studied polymers, we also obtained sensory evaluation 
scores from the expert panel. A full list of polymer samples with a two- 
score sensory assessment is presented in Table S1. To access the corre-
lation between the sensory evaluation scores and the e-nose segment 
responses we apply Pearson’s correlation coefficient r: 
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r =

∑17

i=1
(xi − x)(yi − y)

16 • sx • sy
, (2)  

where xi, yi – variables of the samples (11 sensor segments, R1-R11, and 
2 sensory evaluation scores); x, y – the mean values of the variables for 
the samples of 20; sx, sy – standard deviation for the samples. For such 
sampling size, a strong positive or strong negative correlation is 
observed if the correlation coefficient is more than a critical value rcrit of 
0.606 (p = 0.01,n = 17) (Aspelmeier, 2005). 

Assuming a correlation between the e-nose performance and sensory 
evaluation scores, we applied the multiple linear regression models for 
defining the patterns between the responses of the Al-doped ZnO e-nose, 
as independent variables or predictors, and sensory evaluation scores, as 
dependent ones. The data were analyzed using IBM SPSS Statistics- 
version 28 (IBM Corp. Released, 2021. IBM SPSS Statistics for Win-
dows, Version 28.0. Armonk, NY: IBM Corp.). The algorithm of fitting 
the data by the best model is based on the gradual removal of the in-
dependent variables with the low Pearson’s coefficient r. The results of 
such data dimensionality decrease were evaluated by comparing the 
adjusted R2. 

We built regression models for the first and second sensory evalua-
tion ratings. As an assessment of the quality of the proposed model, the 
coefficients of determination R2 were calculated (Table S2). According 
to the data on Pearson’s correlation coefficients, we evaluate the quality 
of the correlation when using the method of backward elimination of 
predictors that have a poorly pronounced correlation with the depen-
dent variables of the regression model. Thus, we studied regression 
models for the first and second sensory evaluation scores with e-nose 
responses using the full and eliminated set of predictors (Table S3). 

3. Results and discussion 

3.1. Physical and chemical features of HDPE-based plastics 

We studied polymers based on high density polyethylene (HDPE), 
which is a high molecular weight organic compound with a single car-
bon–carbon –CH2–CH2– bond between units and low numbers of ter-
minal –CH3 groups per 1000 carbon atoms. These compounds are high- 
carbon analogs of alkanes obtained by the ethylene polymerization re-
action with an almost unbranched linear structure and a high degree of 
crystallinity. The appearance of the samples, all made of HDPE, is given 
in Fig. 2a (insets): a primary polymer (Sample #1), recycled polymers 
with (Sample #2) and without (Sample #3) the zeolite adsorbent addi-
tive used to remove odors after recycling processes. To evaluate the 
differences in vapor appearance and temperature of polymers’ degra-
dation in air, we carried out STA-MS and gravimetric tests (see Fig. 2a 
and Table S4 in the Supplementary Materials). We monitored the pro-
cesses occurring at the time of thermal degradation of polymers due to 
changes in the polymer mass and intensities in the DSC function (μV/ 
mg) as well as in the values of the ion current at m/z = 44 (characteristic 
molecular ion CO+

2 during the degradation of hydrocarbon polymers). 
The STA-MS data for the polymers suggest a decrease of the DSC func-
tion in the temperature range of 120–125 ◦C, which corresponds to the 
melting point of high-density polyethylene and, accordingly, the poly-
mer transition to a viscous-flow state. For the primary polymer, intense 
degradation processes in the temperature range of 430–440 ◦C are 
presumably associated with the breaking of the carbon-carbon bonds 
(Norris, 1932), due to the presence of narrow intense peaks of DSC and 
ion current. Similar peak positions for DSC and ion current are observed 
for recycled plastic samples, which confirms the assumption of oxidative 
degradation of polymers. However, for recycled samples, there is also an 
increase in heat flux and ion current at higher temperatures (T >
450 ◦C), which might hint at the presence of organic impurities in these 
samples, which can be associated with the presence of odors of these 
plastics. Gravimetric tests were carried out to estimate the content of 

Fig. 2. Physicochemical characteristics of the polymer samples: (a) TGA/DSC-MS analysis for plastic samples; (b) Raman spectroscopy of the polymer’s structure for 
Sample #1; (c) Qualitative Headspace-GC-MS analysis of polymer samples with a semi-quantitative evaluation of volatile compounds (T = 70 ◦C; signal-to-noise ratio 
- 1489:1). 
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VOCs in polymer granules when heated to temperatures 50, 75, and 
105 ◦C. The choice of temperatures for the gravimetric assessment of 
VOCs content and its further evaluation by Al-doped ZnO e-nose was 
made with an attempt to reduce the time for reaching the subsequent 
thermal equilibrium of polymer samples when compared to the standard 
procedures for determining the VOCs content in polymer matrices 
(ASTM D 4526-96:2001 Standard Practice for Determination of Volatiles in 
Polymers by Static Headspace Gas Chromatography (2001), ISO 
13741-1:1998 Plastics/rubber — Polymer dispersions and rubber latices 
(natural and synthetic) — Determination of residual monomers and other 
organic components by capillary-column gas chromatography, 1998). The 
VOC content is significantly different for polymers after the annealing at 
the temperature of 105 ◦C (Table S4 in the Supplementary Materials). 
The relative VOC contents of Sample #1, Sample #2 and Sample #3 at 
105 ◦C are correspondingly 0.23 ± 0.05%, 0.22 ± 0.03% and 0.30 ±
0.04%. For Samples #1 and #2 these characteristics are similar due to 
the presence of a zeolite additive in Sample #2. According to this, the 
zeolite helps to enhance the adsorption of volatile substances which 
providing the shift of the e-nose vector signal to the one of the primary 
polymer (Sample #1) (Supplementary Materials). 

The qualitative assessment of the structure of plastic, Sample #1, by 
Raman spectroscopy indicates high density polyethylene (Fig. 2b) 
(Araujo et al., 2018; Mutter et al., 1993). The peaks at 1430-1470 cm− 1 

and 2840-2900 cm− 1 respectively correspond to the bending and 
stretching vibrations of the –C–H and –CH2 bonds in the alkane chain. 
For recycled polymers, a wide blurring of vibrational reflections in the 
spectra is observed, which is likely due to the high content of impurities 
in the composition. Additionally, we assess the similarity of the structure 
of samples to standard high density polyethylene by FT-IR spectroscopy 
(Fig. S2). The high-intensity peaks at 2914 cm− 1 and 2846 cm− 1 are 
asymmetric and symmetric stretching vibrations –CH2–, respectively. 
The peaks at 1472 cm− 1, 1464 cm− 1 are related to deformation vibra-
tions –CH3, –CH2–. Bands 730-720 cm− 1 refer to deformation oscilla-
tions –CH2–. Moreover, we observe that the intensity of ATR pikes for 
secondary polymer samples (Sample #2 and Sample #3) is higher than 
for primary polymer (Sample #1). This effect can be related to the lower 
concentration of the preliminary–CH2–CH2– bond monomer units in the 
secondary polymers due to the defects and organic residuals arising 
during the polymer use, which also can be supported by the differences 
of ion currents in STA-MS tests, particularly the ion current values for 
Sample #1 is higher than Sample #2 and Sample #3. 

To confirm the stated hypotheses, we carried out a headspace GC-MS 
analysis of the plastic samples. The results of the analysis are presented 
in Fig. 2c and Table S5. We found that the volatile compounds from the 
gas phase of the studied polymers represent a mixture of non- 
polymerized high-carbon n-alkanes, primarily, octane C8H18, decane 
C10H22, dodecane C12H26, and tetradecane C14H30, with a total share 
above 95%, 50% and 83% for Sample #1, Sample #2 and Sample #3, 
respectively. Thereby the content of unidentified components and im-
purities in samples of recycled polymers is more than 15%. This number 
of unidentified components indicates the need for accurate control of the 
secondary polymer composition to ensure a high degree of recycling 
quality before implementing the plastics for further applications. 

Comprehensive analysis of polymer products using STA-MS, optical 
methods (Raman and IR spectroscopy), as well as gas chromatography 
with various detection options, confirms critical differences in the de-
gree of suitability of plastics as materials for further applications. 
Although these approaches might help to evaluate the particular poly-
mer or VOCs associated with it, they are most often costly in terms of 
equipment energy supply, expensiveness, and express quality assess-
ment, especially for the purpose of controlling recycling processes in 
production. 

3.2. Application of E-nose based on Al-doped ZnO for plastic odor 
analysis 

We further analyzed the polymer samples using an on-chip made 
multisensor array with a sensitive Al-doped ZnO layer. The odor profile 
of plastics is a mixture of VOCs, just as shown earlier, that facilitates a 
unique response of sensor segments. We compared the odor profiles of 
the samples acquired at 25 ◦C with the profiles obtained when the 
polymers were heated to 50 ◦C and 75 ◦C to intensify the desorption of 
volatile compounds from the polymer surface. We recorded the data of 
four repeated cycles for each of the polymers at different temperatures. 
When the chip is exposed to air with organic vapors, we observed a 
change in the analytical signal of the multisensor chip, i.e., chemir-
esistive responses of the sensor segments (Fig. S3 in the Supplementary 
Materials), regardless of the sample temperature. However, as the 
polymer sample temperature rises, an increase in the chemoresistive 
response is observed, which is associated with the gradual desorption of 
VOCs and solvent residuals from the plastic surface and, as a result, an 
increase in the concentration of volatile substances. Also, the relative 
standard deviations (sr) under different conditions for Sample #1, Sample 
#2, and Sample #3 are presented in Table 1 and Fig. S3 in the Supple-
mentary Materials. Thus, we found that the recycled polymer sample 
(Sample #3) has the lowest RSD value, which contributes to the good 
achieved reproducibility for the analysis of secondary polymers. This 
may be due to the presence of a high concentration of volatile com-
pounds, in contrast to Sample #1 and Sample #2. High RSD values at 
25 ◦C compared to similar values at elevated temperatures are likely due 
to the weak desorption of VOCs from the surface of the polymer gran-
ules, which leads to more pronounced differences in parallel tests for the 
identical polymer samples. According to this, a large data scatter is also 
observed at the low sample temperature, which indicates that a proper 
polymer quality analysis should be carried out at 50 ◦C. 

Under the supply of synthetic air, containing VOCs desorbed from 
the surface of the studied samples, the resistance of the Al-doped ZnO 
sensor segments decreases, which indicates the n-type sensor response 
(Fig. 3a). This is because the VOCs are the reducing ones (“electron 
donors”) as the presence of high-carbon alkanes was established by 
headspace GC-MS results, and thus we observe the increase of conduc-
tivity of these n-type semiconductor sensor segments by exposure to 
VOCs. The mean response values (R) for Sample #1, Sample #2, and 
Sample #3 are described in Table 1 and Fig. 3b). The shown unique 
combination of sensor responses is the so-called ‘fingerprints’ of plastic 
in the artificial space of perception of plastic odors by an electronic nose. 
We collected a database of fingerprints for each type of polymer at the 
explored heating temperatures. It was found that with an increase in the 
sampling temperature, there was an increase in the chemiresistive 
response of the electronic nose sensor segments due to the higher con-
centration of volatile compounds in the synthetic air flow. However, 
comparing the average response rates at elevated temperatures, we 
observe that for a sample with an adsorbent additive in a polymer 
composite, lower chemiresistive responses are detected than for another 
recycled plastic. This effect can be related to the high adsorption 

Table 1 
Sensing characteristics of Al-doped ZnO-based electronic nose to the plastic 
samples.  

Temperature, 
◦C 

Sample #1, % Sample #2, % Sample #3, % 

R sr, 
% 

R sr, 
% 

R sr, 
% 

25 0.008 ±
0.002 

17 0.05 ±
0.01 

13 0.46 ±
0.04 

10 

50 0.041 ±
0.003 

1 0.14 ±
0.01 

7 0.83 ±
0.04 

2 

75 0.035 ±
0.002 

9 0.12 ±
0.02 

10 0.78 ±
0.02 

3  
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capacity of the additive with respect to organic substances on the 
polymer surface. The detailed assessment of the influence of zeolite 
additives on the chemiresistive responses is presented in Note #1 and 
Fig. S4 in the Supplementary Materials. 

A comparison of the results obtained by Al-doped ZnO e-nose and 
alternative methods such as GC-MS, STA-MS, FT-IR spectroscopy, and 
gravimetry indicates that residual organic substances appeared due to 
polymer recycling contribute more significantly to the e-nose responses 
when compared residual monomers (octane C8H18, decane C10H22, 
dodecane C12H26, and tetradecane C14H30). In particular, this assump-
tion is confirmed by the observed changes in the ion current values for 
m/z = 44 when conducting STA-MS tests and the decrease in the in-
tensity of the main peaks (2914 cm− 1 and 2846 cm− 1) at FT-IR spectra 
for the secondary polymers in comparison with the primary one. 

Also comparing the results obtained with the Al-doped ZnO-based 
electronic nose at 25 ◦C conditions and the results of the sensory eval-
uation of the expert panel (Table S6 in the Supplementary Materials), we 
observe that the higher the mean response value of the e-nose, the higher 
the score given by the expert panel. At the same time, for Sample #2 with 
the addition of a zeolite adsorbent, the score of the expert panel turned 
out to be lower than for a similar polymer without this additive (Sample 
#3), which confirms our suggestion about the odor absorption by a 
zeolite. This fact is also reflected in the lower value of the mean e-nose 
response for Sample #2 when compared to Sample #3. Thus, we can 
conclude that the scores of the expert panel coincide well with the e-nose 
analytical signals. 

Simultaneously with the measurements by an electronic nose, we 
performed a mass spectrometric analysis of the gas phase containing 
volatile components from polymers (Fig. S5). At 25 ◦C, a similar ratio of 
the intensities of the gas phase components was observed, as in the case 
of the sensor responses of the electronic nose. For recycled polymers, 
peak intensity is observed for m/z = 18 and 36, which is most likely due 
to the presence of various oxidized carbon-containing compounds and 

possibly residual adsorbed water molecules. With an increase in the 
plastic sample temperature, the number of significant peaks decreases to 
determine the expected composition of a mixture of volatile substances. 
Increasing the polymer heating temperature, in the case of an alternative 
method of polymer quality testing (mass spectrometry), makes the task 
of accurate and error-free classification of samples difficult to achieve. 
However, the e-nose fingerprints of polymers at any studied temperature 
provide more precise characteristics for classifying plastics according to 
their quality in the space of sensor segment components. 

3.3. Machine learning and classifiers protocols for plastics recognition 

Each fingerprint is a multi-dimensional array of responses (or re-
sistances) associated with a particular plastic. Thus, this characteristic 
can be considered as the coordinates of the radius-vector in the multi- 
dimensional space of responses (in our case, the 9-dimensional one). 
To display such a set of characteristic vectors in the 2D space of the 
Cartesian system, it is necessary to reduce the dimension of the space by 
extracting the principal components (PCs) or a combination of eigen-
vectors (LDA, an algorithm similar to Fisher’s linear discriminant 
(Fisher, 1936)) with a minimum loss in the accuracy of the relative 
arrangement of clusters. In the PCA method (unsupervised) (Tharwat, 
2016), the search for new components, in the space in which a set of 
plastic fingerprints are classified, is determined by finding an orthogonal 
transformation for which the sample variance S2

m for m different fin-
gerprints xi along the direction specified by the normalized vector ak 
would be maximum: 

S2
m[(X, ak)]=

1
m
∑m

i=1
(ak, xi)

2
=

1
m
∑m

i=1

(
∑n

j=1
xij, akj

)2

→ max. (3)  

Thus, such subspaces are sought, in the projection on which the standard 
deviation between adjacent patterns would be maximum, thereby 

Fig. 3. Analysis of polymer samples using an Al-doped ZnO-based electronic nose: (a) the plastic odor analysis for Sample #1: sensor responses of the electronic nose 
to VOCs in the air at 25 ◦C and heated to 50 ◦C and 75 ◦C, and (b) obtained polymers odor “fingerprints”. R1 – R9 – the sensor segments at the chip. 
(Sample #1 at υflow = 200 sccm; Sample #2 at υflow = 50 sccm (total flow: 200 sccm; dilution = 4:1); Sample #3 at υflow = 10 sccm (total flow: 200 sccm; dilution 
= 20:1)). 
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determining the maximum degree of data resolution in space with 
minimal distortion of the original datasets. 

The algorithm of linear discriminant analysis (supervised) also al-
lows reducing the multidimensionality by finding eigenvectors, which 
can be used to select the necessary features to improve the accuracy of 
classifying points in a new space (Tharwat et al., 2017). Using the sta-
tistical considerations outlined in these two approaches, we applied 
them to the dataset obtained by the electronic nose. Fig. S6 shows the 
possibility of space dimension reduction for raw data of plastic finger-
prints depending on the sample temperature. Based on the obtained 
data, several features were observed. Firstly, for all cases, the proportion 
of explained variance exceeds 99.0%, which indicates a qualitative 
assessment of this classification using one PC1 or LD1 component. 
Secondly, from the classification data, we found out that in the case of 
the temperature of 25 ◦C (Figs. S6a and d) there is an overlap of 
fingerprint clusters related to Sample #1, Sample #2, and synthetic air. 
This fact can be explained by the presence of an absorbent additive in 
the composition of Sample #2, which reduces the intensity of the sensor 
signal to a level comparable to that of primary plastic as well as the 
non-odor gas profile of Sample #1 which makes it similar to synthetic air 
cluster. At a temperature of 50 ◦C (Figs. S6b and e), an overlap of fin-
gerprints related to polymer samples and synthetic air is not observed 
due to active thermal desorption of VOCs from the polymer surface. 
With a further increase in temperature (Figs. S6c and f), better 
discrimination of plastics is visually detected, i.e., the larger projection 
of the distance between the centroids of the three classes when 
compared to the 25 ◦C clustering; we conclude that the use of 
high-temperature annealing in the quality analysis process of plastics 
may lead to a decrease in the rate of false-positive classification results. 

Thus, the use of thermal desorption of components from the surface of 
polymers for further classification by quality is rather effective, partic-
ularly due to the competitive gas adsorption and change of component’s 
vapor pressure. 

To selectively classify polymers based on their odor profiles and 
confirm the assumption about the effect of temperature exposure on the 
composition of plastic odor profiles, the RandomForestClassifier machine 
learning algorithm was used with the selection of 7 optimal classifier 
parameters using the GridSearchCV package. The results of data classi-
fication using this protocol are presented in Table S7 (Supplementary 
Materials). This model works according to the DecisionTree protocol, the 
main ideas of which were outlined in the works of the mathematician L. 
Breiman (Breiman, 2001; Breiman et al., 1984), that is, thanks to a 
number of “voting” classifier trees. 

Fig. 4 and Fig. S7 in the Supplementary Materials show plots with 
decision boundaries regarding the pairwise distribution of plastic 
fingerprint data and confusion matrices at optimal parameters. A choice 
of pairwise representation is for simplicity only, but the classification is 
made for the odors from all samples and pure air. The accuracy of the 
proposed approach at temperatures of 25, 50, and 75 ◦C was 98.5%, 
100.0%, and 99.9%, respectively (see Table S7 in the Supplementary 
Materials), as well as there is also an increase in differences between 
sensor responses for the primary and secondary polymers, which en-
hances the quality of the analysis, especially at elevated temperatures. 
As expected from the results of principal component analysis and linear 
discriminant analysis, the minimum value of the pairwise resolution 
coefficient of plastic_1/plastic_2 or synthetic air is observed at 25 ◦C and 
increases with increasing temperature, which makes it preferable to 
carry out the analysis under the elevated conditions and to enhance the 

Fig. 4. Random Forest algorithm for the plastics recognition by classifying e-nose data: accuracy of pairwise recognition of 3 polymers and synthetic air at the 
different sample temperatures: a) T = 25 ◦C; b) T = 50 ◦C; c) T = 75 ◦C. 
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accuracy and objectivity of analysis. 
Thus, the proposed approach of combining an electronic nose based 

on the Al-doped ZnO sensitive layer with machine learning protocols 
with the additional thermal impact on plastics makes conditions for an 
express qualitative assessment of the state of plastic recycling in com-
parison with the virgin samples and enables selective recognition of the 
primary and secondary polymers. 

3.4. Correlation of the e-nose responses and sensory analysis 

Based on the data comparing the sensory assessment by the expert 
panel (Table S6) and the e-nose responses (Table 1), we notice a pro-
nounced relationship between the odors of polymers assessed by sensory 
analysis and chemoresistive responses, allowing us to hypothesize a 
possible good correlation. 

To check the proposed hypothesis, we tested 17 various food plastics 
and polymer compounding products based on polymer matrices such as 
high density polyethylene (HDPE), polypropylene (PP), and poly-
ethylene terephthalate (PET) (Table S1) by sensory evaluation tech-
nique and using an 11-segment multisensor array based on Al-doped ZnO 
similar to what we used in previous tests. A positive relationship be-
tween the predictors and variables is clearly expressed (Fig. 5a and b). 
We calculated Pearson’s pairwise correlation coefficients (Benesty et al., 
2009) for the obtained data. The correlation coefficients for most of the 
chemoresistive responses (predictors) with sensory evaluations (depen-
dent variables), except for the R11 sensor segment, exceed the critical 
value of Pearson’s coefficient for a given sample size of polymer sam-
ples. Still, using Pearson’s correlation coefficient, it is only possible to 
determine the pairwise linear interrelation between the predictor and 
dependent variable. So, the relation between the full set of predictors 
and dependent variables was evaluated by regression analysis methods. 

We built a mathematical model, multiple linear regression (Baskar 
et al., 2017; Sipos et al., 2011), that establishes dependence between a 
predictor and dependent variable, i.e. the e-nose responses and sensory 
evaluation scores: 

F =
∑11

i=1
βiRi + c, (4)  

where F – a value of sensory evaluation score (dependent variable); βi– 
regression coefficient; Ri – chemiresistive response of sensor segment 
with the number i (predictor); c - error terms or constant value. Due to 
the multidimensionality of the studied data, we applied the expected 
versus observed cumulative probability plots (Fig. 5c and d) of the 
regression standardized residuals for the clear representation of the 
regression model. 

We observed that the resulting models have R2 coefficients above 
0.975, which indicates the high quality of the constructed models 
(Table S2 in the Supplementary Materials). Moreover, the exclusion of 
the predictors R5, R11, and R1, R11 for models with the first and second 
sensory assessments, respectively, did not lead to a significant increase 
in the R2 coefficient. However, it is worth noting that the model based on 
the second sensory assessment gives slightly higher regression quality 
values than the model for the first one, which is presumably due to the 
greater similarity of the second sensory evaluation procedure to the e- 
nose measurements. 

4. Conclusion 

We demonstrated a rapid and accurate approach to determine the 
quality of high-density polyethylene compounds as well as the effect of 
zeolite adsorbent additive on the plastic odors using an Al-doped zinc 
oxide based electronic nose and machine learning tool. PCA and LDA 
clustering were implemented for the polymer discrimination in 2D 
component space at different sample temperatures. We found that the 
higher the sample temperature, the higher the effect of the zeolite ad-
ditive on the odor profile of the recycled polymer, and the better cluster 
discrimination and reproducibility. Using the Random Forest machine 
learning classifier, we observed that the pairwise discrimination ratio of 
plastics in the fingerprint space was more than 98.5%, which showed a 

Fig. 5. Correlation assessment and regression model between the Al-doped ZnO e-nose based on the array of 11 sensors and two-score sensory evaluation: (a) average 
normalized responses of 17 polymers; (b) normalized sensory evaluation scores; (c, d) Expected versus observed cumulative probability plot of the residuals in the 
regression models. 
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high resolution between the average response data of the row-vectors in 
the range from 0.8% to 46%, from 4% to 83% and from 3.5% to 78% at 
25, 50 and 75 ◦C, respectively. The differential scanning calorimetry 
approach with mass spectrometric detection (STA-MS), headspace GC- 
MS, Raman, and FT-IR spectroscopy were implemented as alternative 
methods for analyzing the structure and properties, which confirm the 
correlation between sensor responses and sensory characteristics of 
plastics. We also achieve a good positive correlation between the sen-
sory features of studied polymers and Al-doped ZnO e-nose responses, 
which helps to involve the multiple linear regression model with the R2 

coefficient of more than 0.975. According to the analytical character-
istics, compactness, and artificial intelligence tools, we believe that the 
proposed smart multisensor systemis a promising approach for assessing 
the quality of plastics in the production processes for food and phar-
maceutical industries. 
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