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Abstract: In the present work, we investigate the potential of modified barium titanate (BaTiO3), an
inexpensive perovskite oxide derived from earth-abundant precursors, for developing efficient water
oxidation electrocatalysts using first-principles calculations. Based on our calculations, Rh doping is
a way of making BaTiO3 absorb more light and have less overpotential needed for water to oxidize.
It has been shown that a TiO2-terminated BaTiO3 (001) surface is more promising from the point of
view of its use as a catalyst. Rh doping expands the spectrum of absorbed light to the entire visible
range. The aqueous environment significantly affects the ability of Rh-doped BaTiO3 to absorb solar
radiation. After Ti→Rh replacement, the doping ion can take over part of the electron density from
neighboring oxygen ions. As a result, during the water oxidation reaction, rhodium ions can be in
an intermediate oxidation state between 3+ and 4+. This affects the adsorption energy of reaction
intermediates on the catalyst’s surface, reducing the overpotential value.

Keywords: electrocatalysis; photocatalysis; energy storage and conversion; electrode materials;
water splitting

1. Introduction

The growing demand for environmentally friendly and cost-effective energy sources
has led to intensive research into various renewable energy sources. In this regard, photo-
electrochemical hydrogen generation through water splitting has emerged as a promising
avenue due to its affordability and environmental friendliness. In 1972, Honda and Fu-
jishima first reported hydrogen production through photochemical water splitting using
the semiconductor TiO2 [1]. Since then, this phenomenon has been extensively studied,
and numerous materials and water-splitting systems have been developed. In the process
of photoelectrochemical (PEC) water splitting, hydrogen is produced from water by using
sunlight and specialized semiconductors called PEC materials. These materials directly
split water molecules into hydrogen and oxygen using light energy.

An integrated PEC system consists of light absorbers, electrocatalysts for the hy-
drogen evolution reaction and the oxygen evolution reaction (OER), electrolytes, and
membranes. This system can be used to efficiently produce hydrogen fuel from sunlight,
especially through the photo-electrolysis of water, generating sustainable hydrogen and
oxygen. However, the key to achieving viable PEC solar water splitting lies in carefully
selecting semiconductive electrode materials. These materials must have low band
gaps and exceptional stability and be inexpensive. This strategic choice allows for the
absorption of a greater amount of visible light, thereby enhancing the overall efficiency
of the process.
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Perovskite-based materials are widely regarded as highly efficient photocatalysts
for water splitting due to their adjustable electronic properties [2–6]. In addition, per-
ovskite materials comprise environmentally benign and inexpensive elements abundant
on Earth [7,8]. Recently, there has been increased focus on using perovskites as cost-
effective catalysts for water electrolysis due to a deeper comprehension of the rapport
between electronic structure and reactivity [9,10]. As a new category of perovskite
derivatives, layered Ruddlesden–Popper perovskites are currently attracting growing
research attention [11,12].

BaTiO3, utilized as a crystal in non-linear optics, dielectric ceramics, and piezoelectric
materials, is among the ferroelectric oxides that have been the subject of extended scientific
inquiry [13]. The optical band gap of pristine BaTiO3 is 3.2–3.4 eV, much larger than the
activation energy of 1.23 eV required for water splitting [14]. Therefore, the use of bare
titania for solar energy harvesting is not efficient. Band gap excitation requires ultraviolet
irradiation (UV); however, UV light accounts for only 4% of the solar spectrum compared
to the 45% that is visible. So, any shift in optical response to the visible range will have a
profound positive effect on the photocatalytic efficiencies of BaTiO3 materials.

There have been reports of water electrolysis using BaTiO3 electrodes [15,16]. Ni-
supported BaTiO3 exhibits activity for CO2 reformation [17], Pd-modified BaTiO3 efficiently
catalyzes NOx reduction [18], and Cr-modified BaTiO3 catalyzes the reduction of nitroben-
zene and aniline [19]. Several methods are used for enhancing the electronic properties of
barium titanate for electrocatalysts application. Catalyst performance could be, in principle,
improved using different promoters like W, Mn, and Fe [20–22]. According to a theoret-
ical study [23], FeTi and NiTi substitutions increased electrical conductivity and reduced
overpotentials for the OER. Xie et al. [24] revealed experimentally that applying a 2% Mo
doping to BaTiO3 results in a reduction in the optical bandgap that activates its photo-
catalytic performance. Eu-doped BaTiO3 nanoparticles show remarkable electrochemical
performance towards the oxygen evolution reaction (OER) and excellent stability over
2000 cyclic voltammetry cycles [25].

Rh doping is one of the most effective methods that enables one to produce a visible-
light-responsive photocatalyst [26–28]. Related to BaTiO3, rhodium-doped SrTiO3 ex-
hibits remarkable photocatalytic efficiency in the process of H2 evolution from an aqueous
methanol solution under visible light irradiation, outperforming all other visible-light-
activated oxide photocatalysts [27]. Bhat et al. [29] suggested that Rh-doped BaTiO3 resulted
in the formation of mid-gap electronic states, causing a reduction in the band gap of BaTiO3
while simultaneously avoiding the formation of recombination centers. As seen from the
studies mentioned above, the research on Rh-modified impacts on the catalyst properties of
BaTiO3 is limited and requires more detailed consideration. In light of these novel findings,
in the current article, we investigate the degree to which a minor modification can be made
to the chemical composition of the surface of barium titanate (BaTiO3) to tune its catalytic
reactivity. This study focuses on the optical absorption and catalytic performance towards
OER of pure and Rh-modified tetragonal BaTiO3 structures.

2. Theoretical Surface and Thermodynamic Model
2.1. Structure Models

In this work, the tetragonal BaTiO3 phase, which is not energetically favorable at a
temperature of zero but exists at room temperature, was used in the modeling conducted.
Initial crystal structure was taken from the Materials Project database [30]. To make the
(001) surface models of BaTiO3, slabs with eleven layers of TiO2 and BaO that are symmetric
concerning the mirror plane were used. The end of one of these slabs had BaO planes
for the crystal and was a supercell containing 108 atoms. The second slab terminated in
TiO2 planes containing 112 atoms. The (001) surface was chosen because it is the most
energetically favorable for both TiO2 and BaO terminations [31]. A vacuum layer measuring
15 Å thick was applied perpendicular to the slabs to avoid artificial interactions between
the slab and its periodic images.
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Even though these slabs are not stoichiometric, they maintain symmetry when the
Ba/Ti atoms are substituted with Rh on the outermost layer, preventing the system from
having a dipole moment. Due to periodic boundary conditions, this dipole moment
may significantly distort the calculated energy values of the systems. These two slab ends
(TiO2 and BaO) are the only possible terminations of (001) surfaces for the BaTiO3 perovskite
lattice structure, as shown in Figure 1. Replacing the Ba atoms on a BaO-terminated surface
results in the doping atom formally entering the RhBa

2+ state. Experimentally, Rh3+ and
Rh4+ ions have been detected when BaTiO3 is doped [32], so neutral OH groups were
added to the surface to change RhBa

2+ into RhBa
3+. The present study focuses on the

TiO2-terminated surface because it has recently been shown that the BaO-terminated
surface is also unstable under operating conditions [23].
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Figure 1. (a) TiO2- and (b) BaO-terminated (001) surfaces of tetragonal BaTiO3.

2.2. Thermodynamic Description

Under the standard conditions (T = 298 K, p = 1 bar, pH = 0), the equilibrium ther-
modynamic potential for water oxidation required to produce oxygen (H2O → 1/2O2 +
4H+ + 4e−) is 1.23 V vs RHE (the reference electrode is further omitted for brevity). In
practice, a potential above 1.23 V is required for this reaction. For heterogeneous catalysts,
this additional potential is referred to as the overpotential η.

The catalytic oxygen evolution reaction (OER) via water oxidation is divided into four
fundamental reaction steps, wherein each step entails the exchange of an electron–proton
pair (where * denotes the adsorption site of the catalyst) [33,34]:

2H2O + ∗ ⇌ OH∗ + H2O + H+ + e− (1a)

OH∗ + H2O ⇌ O∗ + H2O + H+ + e− (1b)

O∗ + H2O ⇌ OOH∗ + H+ + e− (1c)

OOH∗ ⇌ ∗+ O2 + H+ + e− (1d)

Using the normal (computational) hydrogen electrode approach, the reaction free
energy ∆G of the charge transfer reaction H* ⇌ * + H+ + e− under standard ambient
conditions is equal to the ∆G of the H* ⇌ * + 1/2H2 reaction. The reactions’ Gibbs free
energy for steps ∆G1, ∆G2, ∆G3, and ∆G4 in Equation (1) can be expressed as

∆G1 = ∆GOH − eU + ∆GH+(pH)

∆G2 = ∆GO − ∆GOH − eU + ∆GH+(pH)

∆G3 = ∆GOOH − ∆GO − eU + ∆GH+(pH)

∆G4 = 4.92[eV]− ∆GOOH − eU + ∆GH+(pH)

(2)

where U is the potential measured against a normal hydrogen electrode (NHE) under
standard conditions. The free energy change of the protons relative to the NHE at non-zero
pH is represented by the Nernst equation as ∆GH+(pH) = −kBT ln(10) × pH. The Gibbs
free energy differences in Equation (2) include zero-point energy (ZPE) and enthropy
corrections according to ∆Gi = ∆Ei − T∆Si + ∆ZPEi − eU. Entropic contributions under
standard conditions were taken from the CRC Handbook [35]. The Supporting Information
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for Ref. [34] also includes these values. Energy differences ∆Ei calculated relative to H2O
and H2 (at U = 0 and pH = 0) are approximated as follows:

∆EOH = E(OH∗)− E(∗)−
[

E(H2O)− 1
2 E(H2)

]
∆EO = E(O∗)− E(∗)− [E(H2O)− E(H2)]

∆EOOH = E(OOH∗)− E(∗)−
[
2E(H2O)− 3

2 E(H2)
] (3)

The theoretical overpotential can then be readily defined as

η = max[∆Gi]/e − 1.23 (V) (4)

The overpotential represented by Equation (4) is simply a thermodynamic quantity.
Due to the lack of activation barriers, experimentally determined overpotential values
cannot be directly compared with theoretical ones. In addition, experiments are usually
carried out using electrodes containing nanoparticles of the used material, whose active
surface’s exact value is difficult to determine.

3. Results and Discussion
3.1. Effect of Doping on Ground-State Electronic Properties

Geometry modification. The computed lattice parameters for the bulk tetragonal BaTiO3
are a0 = 4.0381 Å and c0 = 4.0999 Å. Several of the experimental data that are accessible are
comparable to our findings: a0 falls within the range of 3.9860 Å to 3.9905 Å, and c0 spans
from 4.0170 Å to 4.0412 Å [36–40].

The TiO2-terminanted surface replacement of Ti4+ with Rh4+ leads to slight dis-
tortion of the lattice, as shown in Figure 2a–c. Each surface Ti4+ ion is surrounded by
four neighboring surface oxygen ions (O1) and one nearest-subsurface oxygen (O2). All
Ti4+-O1 distances are the same and are 2.2027 Å, while the Ti4+-O2 bond lengths are
1.9086 Å. After the Ti4+→Rh4+ substitution, the RhTi

4+-O1 bond lengths are 2.1046 Å,
and the RhTi

4+-O2 distance is 2.3089 Å. Substitution energy, Ti4+→Rh4+, is calculated
as follows:

Edef = (E(Rh-doped) + E(Ti) − E(undoped) − E(Rh))/2,

where E(undoped) and E(Rh-doped) are the calculated energies of the pristine and doped
slabs, and E(Ti) and E(Rh) are the energies per atom for metals hcp-Ti and bcc-Rh. The
calculations yield the value Edef = 7.212 eV per Rh atom. This value is typical for this type
of substitution. Thus, the previously calculated value of the Ti4+→Ru4+ substitution energy
is 6.424 eV per Ru atom [41].

In the case of Ba2+ → Rh3+ + OH− substitution, a much stronger distortion of the
surface structure occurs. After geometry optimization, RhBa

3+ ions are displaced, moving
from the surface layer deep in the slab to the subsurface layer, forming bonds with oxygen
ions in this layer (Figure 2d–f). In this case, in the next atomic layer under the Rh3+ ion,
Ba2+ is present. This finding shows that even if there were a BaO-terminated surface, the
doping ion RhBa

3+ would not be on the surface layer. This would make this site less likely
to be able to catalyze water-splitting reactions.

Electronic density of states. The HSE06-calculated electronic structures of the doped
and undoped models are schematically summarized in Figure 3. Figure 3 presents
the total (TDOS) and partial densities of states of the bare and doped TiO2- and BaO-
terminated surfaces. For both bare surfaces, the O-2p states predominately form a
valence band, whereas the Ti-4d states form the conduction band minimum. The O-
2p→Ti-3d transitions thus determine optical absorption for undoped BaTiO3. The
calculated band gaps for the undoped models are 2.8 eV and 3.0 eV for the TiO2- and
BaO-terminated surfaces, respectively. The different stoichiometries of the studied
models account for this variation in the calculated bandgap values. However, the
bandgap values obtained from the DOS calculations do not coincide with the results of
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the optical spectra calculations, which will be shown below when analyzing the optical
absorption spectra.
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Figure 2. (Left): Top view of the outermost layer of TiO2-terminated (a) undoped and (b) Rh-doped
surfaces. The numbers indicate the distance (Å) between the (a) Ti and (b) Rh atoms and the nearest
surface oxygen atoms (O1). (c) Side view of a doped TiO2-terminated surface (Ba ions omitted);
the numbers indicate the interatomic distance between the metal atoms (Ti: black, Rh: pink) and
subsurface oxygen (O2). (Right): Top view of the two upper layers of BaO-terminated (d) undoped
and (e) Rh-doped surfaces. Side view of a doped BaO-terminated surface (f).

Doping the TiO2-terminated surface results in additional levels due to the Rh-4d states
appearing in the band gap (Figure 3b). The Rh4+ ion also changes the electronic states
of the oxygen atoms that are closest to it. This causes the O-2p peaks to appear in the
calculated DOS near the valence band maximum. This effect also results in an additional
reduction in the band gap. When doping a BaO-terminated surface, in addition to the Rh-4d
states in the bandgap, the Ti-3d states appear near the minimum of the conduction band;
titanium ions close to the Rh ion in the subsurface layer give rise to these states. As Rh4+

shifts from the surface to the layer below, it breaks the bonds between the dopant and the
surface oxygen ions. This creates more O-2p-induced peaks in the DOS near the top of the
valence band (Figure 3d).
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BaO-terminated surface; (d) Rh-doped BaO-terminated surface. EF: Fermi energy.

3.2. Optical Absorption

The effect of doping on optical absorption is shown in Figure 4. Both dry and wet
surfaces are considered. The presence of Rh4+ ions (Figure 4a) on the TiO2-terminated
surface substantially changes the optical absorption spectrum due to the DOS changes
discussed above. Although the DOS calculations for an undoped surface yield a band
gap of 2.8 eV, the optical absorption threshold is 3.35 eV (370 nm). This difference exists
because for optical transitions of the O-2p→Ti-3d type in the energy range of 2.8–3.1 eV,
the oscillator strengths calculated using Equation (8) are equal to zero or assume negligibly
small values. As a result, the optical absorption threshold value for the undoped structure
is in good agreement with experimental data [32]. The spin-down O-2p→Rh-4d transitions
on a Rh-doped surface absorb light in the long-wavelength range. In the short-wavelength
range, optical absorption occurs due to the O-2p→Ti-3d transitions. The optical absorp-
tion peak at 900 nm is suppressed in the aqueous environment and the absorption at
450 nm is significantly reduced. In this case, optical absorption increases in the 500–550 nm
range. A comparison of the calculated data and the experimental results obtained after the
2 mol% doping of BaTiO3 is presented [42]. The agreement between the theoretical and
experimental results can be considered good since modeling shows that in the case of
replacing the surface Ti4+ ion with RhTi

4+, optical absorption occurs in a wide range of
frequencies of electromagnetic radiation. Up to this stage, our model does not consider the
role that Rh4+ ions inside the slab might play in optical absorption. In this case, these ions
would not be on the sample’s surface, and aqueous media would not affect their electronic
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states. Below, we present an analysis and its results for the situation when the Rh ions
reside inside the slab.

The optical absorption threshold value for the BaO-terminated surface is the same as
that found by directly estimating the bandgap value from the DOS calculation and amounts
to 415 nm (2.99 eV). The optical absorption at longer wavelengths is also due to the
O-2p→Rh-4d and O-2p→Ti-3d transitions. In this case, in contrast to the TiO2-terminated
surface, in the 400–520 nm wavelength range (2.4–3.1 eV), there is a contribution from the
Rh-4d→Ti-3d transitions. This finding agrees with experimental data [32]. The transitions
discussed here suggest that the electronic transitions from the Rh3+ ions to the conduction
band are possible, even though Rh4+ usually plays the role of a trapping center [43].
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Figure 4. Optical absorption of undoped and Rh-doped (a) TiO2- and (b) BaO-terminated surfaces.
Black and blue lines correspond to dry and wet surfaces, respectively. The solid lines illustrate total
optical absorption, while dashed and dotted lines correspond to the contributions of spin-up (UP)
and spin-down (DW) electronic states. Orange lines refer to experimental data adapted from Ref. [32].

Since the BaO-terminated surface was probably unstable but we knew that the Rh3+

ions help with optical absorption, we also looked at a model where the Rh ions were put
inside the BaO-terminated slab instead of the slab surface. To ensure the Rh3+ oxidation
state was obtained, neutral OH groups were added to the surface.

The results of geometry optimization, DOS, and optical absorption calculations are
presented in Figure 5. Figure 5a shows how the atomic structure changes when rhodium
is added after the structure’s geometry has been optimized. As in the case of the BaO-
terminated surface (Figure 2e,f), the RhBa

3+ ion is shifted towards the TiO2 plane. Unlike in
the previous case, the displacement occurs in a direction parallel to the surface plane since
the lattice parameters in this direction are lower than those perpendicular to the direction.
The DOS analysis (Figure 5b) shows that the nature of the bottom of the conduction band
is due to the Rh-4d and Ti-3d levels. The Ti-3d states are localized on Ti atoms located
near Rh. So, optical absorption (Figure 5c) begins at 550 nm (2.25 eV) and is caused by
transitions from O-2p to Rh-4d for the spin-down states. Furthermore, at wavelengths of
approximately 500 nm (2.5 eV) and shorter, Rh-4d→Ti-3d transitions are possible. Thus, the
experimentally observed Rh-4d→Ti-3d transitions [32] are most likely caused by Rh3+ ions
inside the sample.
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Figure 5. (a) Change in the arrangement of ions in the slab after Ba was replaced with Rh; (b) electronic
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represent optical absorption by spin-up and spin-down states. The solid line illustrates total absorption.

3.3. OER over Pristine and Rh-Modified BaTiO3

The above results indicate that Rh doping dramatically improves the ability of BaTiO3
to absorb sunlight in the visible range. The TiO2-terminated surface is also more stable
regarding the Ti4+→Rh4+ change, while the Ba-terminated surface’s Rh3+ ion position
is less stable. It was previously shown that the TiO2-terminated surface is stable under
operating conditions. In contrast, the BaO-terminated surface is unstable concerning Ba
dissolution at a wide range of pH values and potentials [32]. Based on these results, we
evaluated the reaction-free energy profile for the OER on the TiO2-terminated surface of
BaTiO3, as described in the Models Section 2.

Figure 6 displays the free energies of water oxidation reactions on a pure and Rh-
modified TiO2-terminated BaTiO3 surface at zero potential and equilibrium potential of
1.23 V vs RHE. (Equation (1)). The oxidation reaction of a single water molecule is con-
sidered both on a dry surface and considering the influence of the aqueous environment.
On a bare TiO2-terminated surface, an overpotential of 1.18 V was found when the surface
was dry. This value is close to the earlier-reported one calculated on the same surface,
equal to 1.22 V [23]. Due to the aqueous environment, this value reduced to 1.08 V. For the
Rh-modified surface, the overpotential values were 0.45 and 0.23 V for dry and wet surfaces,
respectively, which implies that Rh doping improves catalytic activity. The obtained values
are close to those for NiOx films, in which cerium was used as a dopant and gold was
employed as a metal support [44].
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Figure 6. Standard free energy diagram for the OER at zero potential (U = 0, dotted lines) and equilibrium
potential for oxygen evolution (U = 1.23 V, solid lines) at pH = 0 and T = 298 K. Black and blue lines show
data for dry and wet surfaces, respectively. Dashed lines correspond to the ideal catalyst.

Since the efficiency of the photocatalyst in the process of the water oxidation reaction
is determined by the energies of the interaction of intermediate reaction products with the
surface (Equation (1)), it is necessary to analyze the oxidation states of active sites during
the water-splitting process. The results regarding the Bader analysis and the spin states of
active sites on the surface of the catalyst and the intermediate reaction products are given
in Table 1. The number of active sites on the surface also includes the nearest neighboring
ions, O1 and O2, since their charges and spin states change on the doped surface during
the reactions represented by Equation (1).

Table 1. TiO2-terminated surface. Calculated Bader charges q (in |e|) and local magnetic moments
(in µB) for the Ti (undoped surface) and Rh (doped surface) empty sites and as well as sites occupied
by O, OH, and OOH.

TiO2 Surface

Dry

Empty site (*) OH* O* OOH*
Species q µ q µ q µ q µ

Ti 2.15 0 2.25 0 2.10 0 2.22 0
O1 −1.18 0 −1.15 0 −1.15 0 −1.13 0
O2 −1.22 0 −1.24 0 −1.19 0 −1.24 0

Adsorbant - - −0.49 0 −0.74 0.53 −0.31 0.14

Wet

Ti 2.24 0 2.24 0 2.12 0 2.21 0
O1 −1.22 0 −1.16 0 −1.19 0 −1.15 0
O2 −1.23 0 −1.24 0 −1.22 0 −1.24 0

Adsorbant - - −0.52 0 −0.91 0.48 −0.35 0.13

TiO2:Rh surface

Dry

Rh 1.51 1.59 1.77 0.85 1.73 1.04 1.64 0.73
O1 −1.06 0.17 −1.04 0.11 −1.03 0.129 −1.02 0.13
O2 −1.11 0.15 −1.20 0.03 −1.19 0.014 −1.18 0.01

Adsorbant - - −0.37 0.86 −0.33 1.04 −0.19 0.28

Wet

Rh 1.49 1.60 1.76 0.84 1.73 1.08 1.63 0.74
O1 −1.08 0.17 −1.08 0.11 −1.05 0.14 −1.05 0.13
O2 −1.10 0.15 −1.11 0.03 −1.20 0.019 −1.20 0.01

Adsorbant - - −0.43 0.84 −0.46 1.08 −0.23 0.29

In the case of an unmodified TiO2-terminated surface, the charge and spin states of
the catalyst ions change slightly during the oxidation of water, both in the case of dry and
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wet surfaces. The active site of a titanium ion is always in the 4+ oxidation state, and its
nearest neighbors are in the O2− state. An aqueous environment noticeably affects only the
intermediate reaction product O*, reflected in a decrease in overpotential at this reaction
step. In a sense, the electronic Ti4+ ion is too rigid in terms of its properties and cannot
adjust its electronic structure to optimize the water-splitting process. Surface modification
with Rh solves this problem.

When replacing the surface titanium ion with rhodium, the dopant also affects its
nearest neighboring O1 and O2 ions. The data in Table 1 show that as the absolute value
of the Bader charge on the O1 and O2 ions decreases, a non-zero magnetic moment also
appears on these ions. This indicates a charge transfer from the O1 and O2 ions to the
dopant. The spin state of the Rh ion also shows that it is not in the 4+ oxidation state since
in this latter case its formal magnetic moment is 1 µB in the low-spin state (4d5). The present
calculations suggested a value of 1.59 µB for the spin magnetic moment of Rh, which means
Rh is in the 3+ oxidation state; i.e., the formal magnetic moment is 2 µB in the intermediate
spin state. This deviation from the formal value is associated with the charge transfer from
O1 and O2 to the doping cation. During the oxidation of water, the magnetic moment of
Rh is 1.04 (O*) and decreases to 0.85 (OH*) and 0.75 (OOH*) µB. This can be interpreted as
the oxidation state of Rh undergoing a change from 3+ (O*) to 4+ (OH* and OOH*).

Because of the water oxidation reaction, the oxidation state and spin magnetic moment
of the ions on the catalyst surface change, and the reaction intermediates change with
them. The ability of Rh and the surrounding ions on the surface to change their electronic
properties leads to more efficient water oxidation. The influence of the aqueous environ-
ment significantly affects the behavior of OH* species, which, in turn, leads to a decrease
in the overpotential.

Figure 7 shows how the electronic charge density redistributes between the dry
TiO2-terminated surface and the reaction intermediates. The charge transfer ∆Q can
be calculated using the formula given below:

∆Q = QSA − QS − QA, (5)

Here, QSA, QS, and QA represent the spatial charge density distributions for systems
wherein the intermediate reaction products are adsorbed on the surface of the catalyst,
the bare catalyst surface, and the adsorbed species treated separately from the catalyst,
respectively. The oxygen atoms of the adsorbed species are mainly responsible for the
charge transfer. These findings are summarized in Table 1.

We compared the geometry of optimized undoped and doped TiO2-terminated cat-
alyst surfaces with adsorbed reaction intermediates. Table 2 summarizes the distances
between the adsorbents and the surface. In all cases, doping decreases the distance between
the adsorbent and the catalyst surface, except for OOH species adsorption. There is a
significant difference between the undoped and doped surfaces in regard to the orientation
of the adsorbed OH group. In the case of adsorption on an undoped surface, the angle

ˆTiOH = 128◦, while in the case of a doped surface, the OH group is directed perpendicular
to the surface, and ˆRhOH = 180◦.

To illustrate the effect of an aqueous environment, we calculated the spatial distri-
bution of charge density difference between wet and dry TiO2-terminated surfaces; this
distribution was calculated as follows:

∆Q = Qwet − Qdry (6)

Figure 8 illustrates the obtained results. The aqueous environment leads to a transfer
of electron density from surface oxygen ions to titanium ions. In an aqueous environment,
the doped structure experiences a decrease in the electron density on Rh.
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Figure 7. Equation (5) calculates the charge transfer between the TiO2-termiated catalyst surface and
the intermediate reaction products. A side view of the surface of the top two layers is presented. OH
adsorbed on (a) undoped and (b) Rh-doped surfaces; O adsorbed on (c) undoped and (d) Rh-doped
surfaces; and HOO adsorbed on (e) undoped and (f) Rh-doped surfaces. The yellow and blue clouds
indicate the isocontours of positive and negative values of the electron charge density, respectively.

Table 2. Distance (Å) between adsorbents and undoped and doped TiO2-terminated catalysts’ surfaces.

Surface
Adsorbant

O OH OOH

Undoped 1.655 1.836 2.055

Rh-doped 1.754 1.897 1.902

Although the predicted overpotential values are small, in practice, implementing an
electrode with such indicators will take much work. Here, we consider the ideal case of
doping wherein all Rh ions are located on the surface of BaTiO3 at 1.8 at.% doping. In
practice, a significant portion of the doping atoms will occupy sites inside the nanoparticles.
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When the degree of doping is raised to increase the concentration of surface Rh ions, the
hexagonal BaTiO3 phase forms [32]. The catalytic properties of the hexagonal phase still
need to be studied.
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Figure 8. Equation (6) calculates the charge transfer between wet and dry TiO2-termiated catalyst
surfaces. Top view of the upper layer of the (a) undoped and (b) Rh-doped surfaces; side view of the
two upper layers of the (c) undoped and (d) Rh-doped surfaces. The yellow and blue clouds indicate
the isocontours of positive and negative values of the electron charge density, respectively.

Optimizing catalyst activity hinges on the discovery of a catalyst with a significantly
larger surface area and a higher concentration of dopant atoms. These things are very
important for making the tetragonal phase of BaTiO3 doped with Rh function as efficiently
as possible. Ref. [32] serves as a valuable guide for determining the optimal doping level.
The results show that adding 8 mol% Rh changes 85% of the tetragonal BaTiO3 phase into
a hexagonal structure. When synthesizing BaTiO3 crystals with a Rh content below the
specified level, grinding the crystals becomes necessary. This process enhances the working
surface area of the catalyst, thereby increasing the likelihood of detecting Rh atoms on the
surfaces of the resulting nanoparticles. By following this procedure, we can secure the most
efficient catalyst based on BaTiO3 doped with Rh.

4. Computational Details

All the calculations were performed with the ab initio plane wave computer code
VASP [45,46] using the projector-augmented plane wave (PAW) formalism [47]. Optimiza-
tion of the geometry of the studied models and calculation of the thermodynamics of the
water-splitting reaction were carried out using the GGA-PBE (Perdew–Burke–Ernzerhof)
exchange correlation functional [48]. The on-site Coulomb correlation of d-electrons was
taken into account by employing Hubbard corrections in the Dudarev parametrization [49]
with a Ueff = Uc − J value of 2.6 eV for titanium [50]. We must admit, on the basis of our test
calculations, that the application of the Ueff-parameter to Ti/Rh does not change the main
conclusions/results regarding the surface free energy diagrams. Contrarily, the calculations
of optical properties require accurate electronic band structures. We therefore applied the
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hybrid HSE06 density functional to calculate the electronic density of states and optical
absorption from the DFT+U optimized charge density [51]. The optical properties were
analyzed based on the transition dipole moment matrix elements:

Dσ,ij = e
〈

ψKS
σ,i

∣∣∣r∣∣∣ψKS
σ,j

〉
(7)

for transitions between the initial state (σ,i) and final state (σ,j) calculated on the basis of
Kohn−Sham orbitals ψKS

σ,i , where σ is a spin index, i(j) labels orbitals, and e is an elementary
charge. The transition dipole moment was used for calculating oscillator strength:

fσ,ij =
4πmνσ,ij

3e2ℏ
∣∣Dσ,ij

∣∣2, (8)

where m and h̄ are the electron mass and Planck constant, respectively, and abd νσ,ij is the
frequency of transition between the ith and jth states. Using the oscillator strengths and
assuming a lack of spin–orbit coupling, the absorption spectra can then be determined as
follows: α(ν) = αα(ν) + αβ(ν), where ασ(ν) = ∑ij fσ,ijδ

(
ν − vσ,ij

)
.

The thermodynamic corrections for the solvation effect were calculated using
VASPsol [52], allowing us to consider surface wetting through the water continuum model
and distinguish between dry and wet conditions. If the continuum model applied, the
wet conditions were stated. The Monkhorst–Pack grid-sampling mesh used for the bulk
calculations had dimensions of 2 × 2 × 2, and that for the slab calculations had dimensions
of 2 × 2 × 1, with a cutoff energy value of 520 eV. The charge distribution on the ions
was studied using Bader topological analysis [42]. All calculations were carried out while
taking spin polarization into account, except in the case of bare undoped slabs. It has been
shown that it is important to consider spin polarized electronic structures since adsorbed
species have a spin moment [53].

5. Conclusions

The viability of the Rh-modified TiO2-terminated BaTiO3 (001) surface for developing
efficient water oxidation catalysts to be used as photoanodes in PEC systems was examined
using first-principles calculations. According to our results, Rh doping has a double effect
on the properties of BaTiO3. On the one hand, doping causes the material under study
to absorb sunlight in almost the entire visible range. On the other hand, the surface Rh
ion acts as an excellent catalytic center, significantly lowering the overpotential values of
the electrochemical reaction. It has been shown that considering the aqueous environment
influences both effects.
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