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Abstract: This article examines quantum group symmetry using the Potts model. The transformation
of the Potts model into a polynomial knot state on Kaufman square brackets is analyzed. It is shown
how a dichromatic polynomial for a planar graph can be obtained using Temperley–Lieb operator
algebra. The proposed work provides insight into the 74 knot-partition function of Takara Musubi
using a strain factor that represents the particles in the lattice knots of the above-mentioned model. As
far as theoretical physics is concerned, this statement provides a correct explanation of the connection
between the Potts model and the similar square lattice of knot and link invariants.
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1. Introduction

Recently, there has been great concern about the partition function of the Potts model,
which translates into topological combinatorics based on quantum group symmetry. For
this reason, we adopt the symmetry point of view, owing to Landau’s contribution to
science [1]. The modification of quantum symmetry in the model leads to variation in the
phase transition.

The interaction symmetry and functional analysis of models (including the Potts
model) of statistical mechanics builds on the constructional work of Jones [2]. This has led
to the concept of internuncial subfactors within theoretical particle physics. Furthermore,
Banica demonstrated that statistical mechanical models such as Jones’ originate from quan-
tum groups [3]. Interest in this kind of research arose following Khovanov’s cohomology
theory and its connection to the Potts model of statistical mechanics [4]. Homological
Euler characteristics define a partition function based on Khovanov cohomology and the
Potts model.

Graded cohomology groups have been constructed for each graph, for which the
chromatic polynomial is on a planar graph [5–10]. This paper is based on earlier work
on knot polynomials by Khovanov [11], the chromatic polynomial by Helme-Guizon and
Rong [12], and the Tutte polynomial (for planar graphs) by Jasso-Hernandez and Rong [13].

Research into the Potts magnetic model and thermal properties of various two-
dimensional lattices has important fundamental significance in physics. The Potts model
models the energetic interactions of micro-scale nearest neighbors. Thus, in an intricate
system, the conduct of the system is determined on a macro level. In the theory of phase
transitions, this model plays a significant role. Consequently, in graded Khovanov ho-
mology theory for classical links, the use of graded Euler characteristics will result in the
Jones polynomial [14–16]. Cohomology groups of Euler characteristics are a variant of the
dichromatic polynomial [17].

We review the Potts model on a planar graph with ending area states and functions of
graph vertices. A small modification argument of the model can lead to a sharp change
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in the symmetry elements; on certain occasions, the symmetry of the continuing group
is unchanged, which means a change in the phase alteration. This provides compelling
reasons to study the symmetry of quantum groups of physical models [18–20]. Quantum
topological groups study operations on the vertices of a model or graph that are permutable
with the Hamiltonian.

Accordingly, the dichromatic polynomials of (2, n)-torus knots are defined depending
on the variables of the universal Tutte polynomial [21,22]. The models of Baxter are of
great interest to researchers of the dichromatic Tutte polynomial in terms of mathematical
physics [23–33].

At the beginning of the 21st century, scientists [34–43] searched for new methods of
calculating the corresponding combinatorial polynomials that arise from the statistical
mechanics of Bose gases. For example, Ref. [44] presented a statistical sum of a vertex
model based on a directed planar graph.

Kauffman clearly explored exactly solvable vertex models with knot theory [45]. Semi-
classical physics can reduce the limit of some abstract classical physics using anticommuting
variables in the Potts model [46]. In the q-state Potts model, one assumes a choice of de-
formation coefficient value, such as 1, 2, 3, . . . , q for each vertex G. Therefore, if G has N
vertices, then there are qN states. The values of q can be the spins of elements at lattice knots,
the types of metals in the fusion, etc. In [47–50], the statistical sum was calculated for the
Potts model with different spins on square lattices. The study of bi-partite and tri-partite
vertex models based on braid theory has led to the study of the invariant knot [51–53]. The
partition function of dichromatic knot polynomial parameterization is an interpretation
of Boltzmann weights on a planar graph. The value of Z(X) allows the calculation of the
main global parameters (temperature, total energy) and the study of phase transitions of a
system (for instance, from a liquid to a solid state). If we generalize a regular lattice to an
abstract graph, then the partition function of the q-state Potts model is equivalent to the
Tutte polynomial [54,55].

Approaching combinatorics, each chord diagram of the 74 knot can be associated with
its own intersection graph. However, not every simple graph is a knot diagram graph.
Coloring the vertices of a knot diagram allows the study of the dichromatic polynomial
of a planar graph. Thus, we obtain a transition from a topological object-a knot to a
combinatorial object-a graph. Using this transition, we can solve some topological problems
using combinatorial methods.

This paper addresses the problem of learning a dichromatic polynomial and a 74 knot-
based Potts model by constructing a planar graph. The new result we want to highlight in
this paper is the coloring of some regions of a planar graph. In addition, there is also the
connection between the Potts model and the topological combinatorics of a planar graph.
Thus, we define a close connection between the theory of graphs and knots.

Our goal is to obtain a new dichromatic knot polynomial. That will allow the deter-
mination of the chromatic states of each vertex of the knot diagram not described in [29].
Based on this dichromatic polynomial, it is possible to describe a quantum statistical in-
terpretation of the chromatic states of each vertex of the knot diagram. Consequently, we
check the amounts by state for knot 74 by constructing a planar graph. For this purpose,
Temperley–Lieb algebra and the Tutte polynomial were used. In this article, we present the
correspondence between the partition function of the Potts model and the Tutte polynomial.
Therefore, transforming the 74 knot diagram into a graph will lead to remarkable synergies
between the two research areas. The 74 knot diagram is represented as a two-color (white
and black states) graph in which there are many complex moves. Complex moves reduce
the number of edges by one and cannot represent knots in a projection with a minimum
number of intersections. The transition of 7-intersection knot diagrams to 4-valent graphs
can expand the horizons of physics. This motivates the research of exactly solvable models,
as per the Potts model and new dichromatic polynomials.

This work is presented as follows. The second part discusses the physical basis among
the number of spin states in the Potts model and the probability of occurrence regarding a



Symmetry 2024, 16, 842 3 of 8

certain state of the graph knots. In the third section, the successive steps of finding the two-
color polynomial of the 74 knot are calculated by determining the chromatic state of the knot
diagram. In the fourth section, the dichromatic 74 knot polynomial from Takara Musubi
is defined by coloring some regions of the planar graph. The partition function of the n
function of the chiral Potts model is also considered through the corresponding variables
and the deformation coefficient. The partition function associated with the planar graph
G is calculated. In the general case, for a graph G with vertices i, j, . . . and edges ⟨i, j⟩, the
partition function is equal to ZG(Q, T) = ∑σ e(

−1
kT )E(S). Where S passes through the states,

G, E(S) is the energy of the state, k is the Boltzmann constant, and T is the temperature.

2. The Partition Function of the Potts Model

In mathematical language, a knot is an embedding circle in 3-dimensional Euclidean
space, R3. A useful way to visualize and manipulate knots is to project the knot onto a
plane: imagine the knot casting a shadow on a wall. A slight change in the direction of the
projection will ensure one-to-one behavior, except at double points, called intersections,
where the “shadow” of the knot intersects itself once in the transverse direction [55]. At each
intersection, in order to recreate the original knot, it is necessary to distinguish the upper
strand from the lower one. This is often done by breaking the strand running underneath.
The resulting diagram is an immersed planar curve with additional information about
which thread is on top and which is on the bottom at each intersection. These diagrams
are called knot diagrams if they represent a knot and link diagrams if they represent a
relationship [56].

For a set of q spins and Hamiltonian hi for i = 1 or 2, the partition function of the
q-state Potts model is

Zi(G) = ∑ exp(−β(hi((ω))). (1)

Here, the summation is performed of all ω spins of groups G and β = 1
kT , where T is

the temperature of the system and k = 1.38 × 10−23 J/K is the Boltzmann constant. The
above task is a standardization factor for the probabilistic Boltzmann partition. This ϖ
means that the probability of the system being in ardent steadiness against an abode of a
certain shape with a degree of heating T is equal to

Pi(ϖ, β) =
exp(−βhi(ϖ))

∑ exp(−β(hi((ω)))
. (2)

Boltzmann’s constant k provides a dimensionless magnitude of the exponent. Rela-
tively, this causes β, K, and T to all appear in the equal term, yet temperature appears as a
relevant variable.

For example, Figure 1 shows all possible states of vertices in a graph with two ro-
tation options (pitch black or colorless) where the whole lot peaks from h1(ϖ) = −11 J
and h2(ϖ) = 13 J. Remarkably, applying a negative value h1 counts edges with iden-
tical spins and h2 computes edges with varied spins at the ends, thus a part of state
ϖ h2(ϖ) = J|E(G)|+ h1(ϖ) [56].

In the following, we will have the opportunity to consider the generalization of K
from real to complex values. Since it is natural to use two independent statements of the
Potts model in inconsistent settings, the backing consideration of how one is merely a
scalar factor against either supports the translation of notional decisions from one context
to another. As an expeditious pattern, contemplate one rectangle. Despite two attainable
rotations (light and pitch black), the nearby lattice is

Z2(G; q, β) = ∑ exp(−βh2(ϖ))=

= ∑ exp(−β(J|E(G)|+ h1(ϖ))) = exp(−K|E(G)|)Z1(G; q, β). (3)

The possible states (with accuracy up to rotation) and their Hamiltonian usage are
shown in Figure 1.



Symmetry 2024, 16, 842 4 of 8

So is the statistical sum is

Z1(G) = 12exp(2K) + 2exp(2K) + 2. (4)

Against the expression for the possibility of the occurrence of a certain state, β = 1
kT is

equal to exp(−βhi(ϖ))
Zi(G)

. The most important thing is that these probabilities of the occurrence
of a certain state and the use of their Hamiltonian depend on temperature. Extending the
sample in Figure 1, we accept J > 0, i. J > 0, and argue the probability of a completely dark
state at various temperatures. Given that J is positive, h1 is used, with the all-pitch-black
state existence of a solitary two-squat power state. If we suppose that ϖb is the all-dark
state, then the possibility that the system is in the all-dark state as a purpose of degree of
heating is Pr(ωb, T) = exp(4K)

(12exp(2K)+2exp(2K)+2) , where, as above, K = βJ.

Figure 1. All possible states of graph vertices.

3. Finding the Dichromatic Polynomial by Constructing a Planar Graph

We determine the dichromatic polynomial as follows:

Z[G]( ) = Z[G
′
]( ) + υZ[G

′′
]( ), (5)

Z(• ⨿ ) = qZ( ), (6)

where Z(•⨿) is the result of removing an edge from G while G
′′

and of compressing that
same edge so that its end knots have been crumpled to a single knot. In the second equation,
• performs a graph against the knot and not the edges and •⨿ is the disjoint combination
of the graph G.

Here, • indicates any connected shaded area and ⨿ shows an unconnected connection.
If we define chromatic state S as any split of region U (knot shadow or link diagram) such
that every vertex has been split, then the shading has ∥S∥ numbers which are equal to the
number of shaded regions, and i(S) is equal to the quantity of internal vertex S. The sum
of revolutions is expressed by the formula

Z(U) = ∑ q∥S∥υi(S) =
S

∑
S

q
1
2 (N−i(S)+|S|)υ i(S), (7)

Let
W(U) = ∑

S
(q

1
2 )|S|(q

1
2 υ)i(S), (8)

Thus
Z(U) = q

N
2 W(U). (9)

The partitioning function involves counting the shaded areas against the loops in the
connection diagram. The dichromatic polynomial is chosen so that the shaded part of the
region is replaced by an alternating connection diagram, and the number of ∥S∥ (shaded
areas) is replaced by the number of components (grids) by S. The number of limit cycles for
the shaded areas is ∥S∥ where N indicates the number of double peaks, i.e., of the stroked
range in U is consequently in monosemantic conformity, with the vertices of graph G(U).
Therefore, we claim that N is the sum of dual vertices and S is the chromatic state of U
with ∥S∥ coherent hatched regions and i(S) interior vertices.

In the dichromatic polynomial, the extended state S in Figure 2 is given by the pair
S = (q, υ), q|S|υi(S) = q2υ3, where the q state is several boundaries i(S). Assuming how the
number of υ factors corresponds to the positive energy contributions in the Potts model,
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we can see that these contributions correspond to groups of vertices i(S) connected by
edges. All these vertices are mutually consistent in the choice of spin state. The advantage
of the two-color polynomial expansion in Kauffman brackets is that it shows that this
graph, invariant of the count, is part of the family that includes the Jones polynomial.
This decomposition of the polynomial shows how a two-color polynomial for a graph,
the middle of which is a closure of a braid, can be expressed in terms of Temperley–Lieb
algebra, which in turn affects the structure of the Potts model for planar graphs, as we
note below.

Figure 2. The extended state S for knot 74 N − i(S) + |S| = 2∥S∥N = 6, ∥S∥ = 4, |S| = 8, i(S) =

8∥S∥ = 6−8+8
2 = 3.

4. Potts Brackets

We release the K-whatever plot knot or gear. Then, W(K) ∈ Z[q
1
2 , q−

1
2 , υ] is a deter-

minate function of q and υ; Z(K) = q
N
2 W(K), where N is the quantity shadow of areas in

K. We will attempt to explain the connection between the Kauffman bracket polynomial
and vertex models in physics, i.e., spin models of orderly nuclear composition, capable of
receiving a quantity of position, several of which are formed by the assignment of spins to
atoms. In the bi-partite model, they should be introduced as points, connected to several
atoms, and directed up and down, accordingly. Four domain planes congregate on either
confluence. Category-link polynomial K will rely on the Kauffman brackets’ entire poten-
tial position of projection K. We measure the bracket polynomial. We will try to establish
evidence of its invariance under the second and third Reidemeister relocation and show
that it is a singular bracket polynomial, serving this selection of axioms. Replacing the
index in the proposition with a Kaufman bracket polynomial and applying the resulting
expression, we obtain a bracket polynomial. We receive an appointment, which is in good
condition, determined by the gear diagrams, but is not constant with respect to Reide-
meister movements. Despite that, this research functions based on graphs. It serves the
following axioms: The quadrate staple polynomial is surely not K(L)-invariant; a two-color
polynomial is defined by three axioms:

Z(•) = q, (10)

surely
Z(•G) = qZ(G), (11)

Z(• • •) = Z(••) + vZ(•). (12)

The first principle is the incipient situation for a graph with a singular peak. In accor-
dance with the second algorithm, in addition to the graph of a new segregate vertex, we
reduce the generation polynomial of the graph to q. The third precept states that if we select
a distinct edge of the graph G, then the polynomial for G receives an additional polynomial
graph with a removed edge, no more than v times, concise to identical vertex [57–59].

Following our consideration, the dichromatic polynomial, hence the quantum Potts
spin model for the L lattice, may be intended by means of constructing diagram link K(L)
and purchased by recursively establishing a planar graph L, which is treated as the shaded
region U. Therefore, by direct calculation, we found the dichromatic polynomial for the 74
knot diagram for L lattices
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Z1 = Z2
1 + υZ2

1 = Z2
1 + υZ2

1 + υZ2
1 + υ2Z2

1 = (q + υ)Z2
1 + υZ2

1 + υ2Z2
1 =

= (q + υ)((q + υ)2 + q)q2 + υq2((q + υ)2 + q) + υ2q2(υ + 2q) =

= ((q + υ)3 + q)q2 + υq2((q2 + 2υq + υ2) + q) + υ3q2 + 2υ2q3 = (13)

= (q3 + 3q2υ + 3qυ2 + 2υ3 + q)q2 + υq4 + 2υ2q3 + υ3q2 + 2υ2q3 =

= q5 + 3q4υ + 3q3υ2 + q2υ3 + q3 + υq4 + 2υ2q3 + υ3q2 + υq3 + υ3q2 + 2υ2q3 =

=∴ Z = q5 + q3 + 4q4υ + 7υ2q3 + 3q2υ3 + υq3.

Then, we calculate the axiom W(K). We use rules for calculation W

W( ) = W( ) + χW( ), (14)

W(• ⨿ L) = yW(L), W(•) = y, (15)

where χ = q−
1
2 , y = q

1
2 . Before we make a 2x2 grid, entertain some significant formulas:

W( ) = W( ) + χW( ) = χW( ) +

+χyW( ) ∴ χW( ) = (1 + υ)( ) + (1 + χy)W( ),

W( ) = W( ) + χW( ) = yW( ) + χW( ), (16)

W( ) = (q
1
2 + q−

1
2 υ)W( ) = (χ + y)W( ). (17)

Reverting to our vertex on knot K, we receive

W( ) = (χ + y)3W + χ[W + χW] + (1 + y)3W + χy[W + χyW] =

= (χ + y)3y + (χ + y)2y + χ2W + (1 + χy)3y + y2(χ + y) + χ2y2W = (18)

= (x3 + 3x2y + 3χy2 + y3)y + χy(χ2 + 2y + y2) + (x2y + χy)(χ + y) +

+1 + 3χy + 3χ2y2 + χ3y3 + χ2y2 + χ2y3 + χ2y2(χ + y)

χ and y are replaced by the deformation factor q. Therefore, for υ = −1, Z(G) is a
dichromatic polynomial (variable q). Theoretically, υ = −1 denote −1 = e−

1
kT − 1 = 0.

Thus, at temperature T = 0, the lattice model matches the dichromatic knot polynomial. 74

Z(L) = q
N
2 W(K)L = (−3q−2 + 4)(1 − q)− q

1
2 + q2, (19)

where q is the deformation coefficient of the rotating model. Thus, such a transformation of a
two-color polynomial toward a knot diagram does not immediately facilitate computations
and requires further research.

5. Conclusions

This study introduces the partition function of graph vertices, which is calculated
using a planar graph in a knot diagram. We explore different research approaches: Temper-
ley–Lieb algebra and the transformation of variables by warp coefficient. In addition, we
highlight the practical application of Temperley–Lieb algebra geometry with respect to the
dichromatic knot polynomial through the Potts model. The formulation of this polynomial
naturally leads to the display of a planar graph.

Thus, by increasing the reliability and usefulness of our research results, this approach
is a physical interpretation of the dichromatic polynomial of knot 74. It, therefore, provides
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a quantum description of a system of particles and antiparticles moving in lattice phase
space. Key areas of our research include transforming a knot 74 diagram into a graph
based on Temperley–Lieb algebra. Accordingly, using these chromatic states as regards the
knot diagram, we defined the dichromatic 74 knot polynomial. In fact, we focused on the
sum of spin model states, which is adequate for this two-color knot polynomial studied
in combinatorics.

The spin model serves as the basis for a theoretical description of multi-colored
states of spins. Moreover, based on the dichromatic knot polynomial, it is possible to
describe physical properties and phenomena in vertex models of statistical mechanics.
More precisely, an important area of research is the influence of limit state on lattices.
This complements and is essential to toroidal and diverse geometric properties, as well
as connections with graph theory. However, the results statistically suggest that the spin
model contributes to the study of topological combinatorics of planar graphs.

We hope that our results will provide a new impetus to improve the analytical under-
standing of planar graphs and communication. Therefore, the Potts model refers to physical
calculations such as the dichromatic graph polynomial [28,29] or Tutte polynomial [15,16].
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