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Abstract: The goal of this paper is to study new cosmological models where the dark energy is
a varying Chaplygin gas. This specific dark energy model with non-linear EoS had been often
discussed in modern cosmology. Contrary to previous studies, we consider new forms of non-
linear non-gravitational interaction between dark matter and assumed dark energy models. We
applied the phase space analysis allowing understanding the late time behavior of the models. It
allows demonstrating that considered non-gravitational interactions can solve the cosmological
coincidence problem. On the other hand, we applied Bayesian Machine Learning technique to learn
the constraints on the free parameters. In this way, we gained a better understanding of the models
providing a hint which of them can be ruled out. Moreover, the learning based on the simulated
expansion rate data shows that the models cannot solve the H0 tension problem.

Keywords: dynamical dark energy models; bayesian machine learning; accelerated expansion

1. Introduction

In modern cosmology, there are several key open problems and various approaches to
solve them including gravitational particle creation and modification of general
relativity [1–14] (and references therein). Recently another one known as the H0 ten-
sion problem has been added to this list [15–18]. The goal of this paper is (1) to con-
sider various new cosmological models explaining the late time accelerated expansion
of the universe [19–26], and (2) to see whether or not the models solve the H0 tension
problem [27–37]. The analysis of the models is based on two approaches. In particular, we
use phase space analysis in the first part of the paper, while in the second part of the paper
we use Bayesian Machine Learning to learn the constraints on the model parameters (see
for instance [32,35,37,38]). The phase space portrait of a model is one of the mechanisms
providing a qualitative understanding of the model. It allows to observe all states of
the model without solving a system of differential equations, but solving algebraic equa-
tions [39–47] to mention a few. On the other hand, Bayesian Machine Learning based on
the generative process allows one to infer crucial properties of the model directly from the
model used in the generative process. This method was recently applied in several studies
indicating very interesting departures from traditional approaches used in cosmology. We
will come back to this in the second part of the paper when we discuss learned constraints
on the parameters.
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In general, dark fluids are actively used to explain the accelerated expansion of the
universe. Chaplygin gas is one of such dark fluids [48–51]

Pde = Aρde −
B

ρα
de

, (1)

where A, B and α are positive constants to be constrained from observational data and ρde
it is the energy density of the gas (or dark energy fluid). In literature there are various
modifications of this fluid too [52–58] (to mention a few).

In this paper, we will consider one of them, assuming that the parameter B in Equation (1)
is not constant. In general, a varying Chaplygin gas can be constructed assuming both A
and B parameters in Equation (1) are not constant. However, in each case, it is important
to have a modification either based on some very well motivated physics or obtain the
constraints in order to justify the crafted phenomenological modification. In our work, we
follow to the second approach and having phenomenological modifications we will learn
which one can survive. It should be mentioned that the interest towards Chaplygin gas is
its dark energy and dark matter unifying ability. However, some critics on this issue also
exist (see for instance [51]).

In our analysis we consider FRW universe with (c = 8πG = 1)

H2 =
ȧ2

a2 =
ρ

3
, (2)

ä
a
= −1

6
(ρ + 3P), (3)

where ρ it is the energy density of the effective fluid, while P it is the pressure. It is easy
to see from the structure of Equations (2) and (3), that, for example, an assumption about
the effective fluid will allow closing the system of differential equations. In general, we
can assume that the effective fluid can be multicomponent one that needs to be confirmed
the observational data. However, here we follow a simplified scenario assuming that the
energy source entering in Equations (2) and (3) is two-component one and that

ρ = ρdm + ρde, (4)

and
P = Pdm + Pde, (5)

where ρde and Pde are the energy density and pressure of dark energy, while ρdm and Pdm
are the energy density and pressure of dark matter. Now the question is how to be with
the dark energy and dark matter. A phenomenological assumption about the content
of the universe is a commonly accepted approach in modern cosmology, which will be
used in this paper as well. There are various assumptions about the nature and origin of
dark energy and each of them had been investigated from various perspectives. On going
research towards dark fluid representation of dark energy, for instance, allows to develop
class of viscous dark fluids equally applicable to cosmic inflation and the accelerated
expansion of the late time universe [59] (and references therein). Moreover, it has been
shown that dark fluids can be described by linear and non-linear EoS. On the other hand,
it appears that dark fluids can be solutions of algebraic and differential equations [60].
Besides dark fluids we can use, for instance, scalar field to construct viable dark energy
models [61] (and references therein). Quintessence and phantom dark energy models
are among them. However, our not complete understanding of the universe shows that
dark energy independent of its way of interpretation can be not enough. In this regard,
various studies allowed to introduce a phenomenological idea of interacting dark energy
models demonstrating that it can be equivalently good as the other ideas. Practically there
is nothing against to this idea. An interaction between dark components of the universe
can smooth some unpleasant aspects in the dynamics of the models making them more
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attractive. The main mechanism to implement a non-gravitational interaction is based on
the energy transfer between dark components in the following way

ρ̇dm + 3H(ρdm + Pdm) = Q, (6)

and
ρ̇de + 3H(ρde + Pde) = −Q, (7)

where Q is the notation of non-gravitational interaction [14,39,62–90] (Non-gravitational
interaction introduced in Equations (6) and (7) indicates energy transfer between dark
matter and dark energy). There are different phenomenological parameterizations of the
interaction term and some of them can help to solve/alleviate the H0 tension problem
too (see references of this paper for more details about interacting dark energy models).

Up to this point we discussed our goal and shortly mentioned the tools we will
use. Then, we presented how to describe interacting dark energy models and what is
the background dynamics. But yet we did not discuss the varying Chaplygin models we
will consider. We will consider two particular models of varying Chaplygin gas (see for
instance [52,58])

Pde = Aρde −
BH−n

ρα
de

, (8)

and

Pde = Aρde −
Ba−n

ρα
de

, (9)

where H is the Hubble parameter, a is the scale factor, while n is a constant, to be the dark
energy. Eventually, we see from Equations (6) and (7) that another crucial aspect allowing
us to study the cosmological models is the interaction term Q. In other words, it should
be given in order to close the system of differential equations describing the background
dynamics of the universe with interacting dark energy models. In this paper, we consider
non-linear interactions Q to be presented in Section 2. It should be mentioned, that we
assume dark matter is a pressureless fluid.

To end this section, let us mention that the phase space analysis allows immediately
demonstrate, that considered forms of non-gravitational interactions allow solving the
cosmological coincidence problem. Besides the phase space analysis we applied Bayesian
Machine Learning approach and learned the constraints on the parameters of each model.
It gives a hint that within considered models the H0 tension cannot be solved. Moreover,
we found which of the models eventually needs to be ruled out.

The paper is organised as follows: In Section 2, we will discuss how the phase
space analysis can be implemented to find late time attractor solutions for suggested
new cosmological models. In Section 3, the phase space analysis is performed, late time
attractors are found and classified according to their cosmological applicability. Moreover,
in Section 4, for each model the constraints on the parameters using Bayesian Machine
Learning have been learned. In the same section very briefly the crucial aspects of the
approach have been discussed too. Finally, discussion on obtained results are summarised
in Section 5.

2. Interacting Models and Autonomous System

In the literature there is a huge number of works devoted to the phase space analysis
of various cosmological models. In order to start the phase space analysis of a model,
an appropriate autonomous system should be found first which is a system of algebraic
equations to be solved. The critical points are solutions of the autonomous system. They
are stable if appropriate Jacobian matrix has a negative trace and positive determinant.
This is in case of linear stability. Following [83] for our models we set

x =
ρde

3H2 , (10)
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y =
Pde

3H2 , (11)

z =
ρdm
3H2 , (12)

and
N = ln a, (13)

where a it is the scale factor. It is not hard to see, that for interacting models the autonomous
system reads as

x′ = 3x(1 + y)− Q + 3Hρde(1 + ωde)

3H3 , (14)

and

y′ = 3y(1 + y) +
Ṗde

3H3 , (15)

where ′ is the derivative with respect to N, dot is the derivative with respect to cosmic
time, Q is interaction term. Explicit forms of Equations (14) and (15) are obtained when
the form of Q is given. It is easy to see, that physically reasonable solutions should satisfy
0 ≤ x ≤ 1 (0 ≤ xde ≤ 1) and 0 ≤ z ≤ 1 (0 ≤ zde ≤ 1) constraints. On the other hand, a
stable critical point will be an attractor, which we are looking for. At the same time we
should remember that x and z according to Equations (2), (10) and (12) should satisfy to
the following constraint

x + z = 1. (16)

Moreover, after some algebra we can see that the EoS parameter of the varying
Chaplygin gas in terms of x and y reads as

ωde =
y
x

, (17)

while the EoS parameter of the effective fluid reads as

ωe f f =
Pde

ρde + ρdm
= y. (18)

In the above equation, we used the fact that dark matter is cold and pressureless. On
the other hand, it is not hard to show that the deceleration parameter q reads as

q = −1− Ḣ
H2 =

1
2
(1 + 3y). (19)

Now, in order to obtain the explicit forms of Equations (14) and (15) we need to define
the form for Q. As we mentioned earlier we will consider new non-linear non-gravitational
interactions. What we consider here can be obtained from the following more general form
of interaction Q

Q = 3Hb
(

ρ +
ρ̂

ρ

)
, (20)

where ρ could be either the energy density of the effective fluid, or the energy density
one of the components of the effective fluid. ρ̂ it is product of the energy densities of the
components of the effective fluid i.e., three possibilities could be ρ2

de, ρ2
dm and ρdeρdm. In

this way we can note that the equations discussed in this section are self consistent and
allow performing the phase space analysis. In the next section we will discuss our results.

3. Phase Space Analysis

As we mentioned earlier, in order to have late time attractors for the cosmological
models, we need the explicit form of non-gravitational interaction Q to have Equations (14)
and (15) determined. In this work we will pay attention to fixed sign non-linear interactions
following from Equation (20). Non-linear interactions having similar structure as here,
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including also models with non-linear sign-changeable interactions already have been
considered in [86]. At this stage of the analysis to simplify the discussion, we impose some
constraints on the model parameter taken from the literature. In particular, we will impose

0 < α ≤ 1, (21)

0 ≤ n ≤ 5, (22)

constraints. On the other hand, the constraints on the deceleration parameter q

− 1 ≤ q < 0, (23)

0 < r =
Ωm

Ωde
≤ 1 (24)

and on the EoS parameter of the varying Chaplygin gas

− 2 ≤ ωde < 0, (25)

gave us an option to reduce the phase space size allowing to find late time scaling attractors
more efficiently. On the other hand, it is not excluded that the phantom divide about
z ≈ 0.2 redshift took place in our universe, therefore constraint Equation (25) is consid-
ered [91–93]. Having imposed discussed constraints we deal with conditional attractors.
They allow obtaining constraints depended late time states of the universe. The goal of
this section is to find and discuss stable critical points preparing appropriate initial seeds
allowing to initialize Bayesian Machine Learning-based analysis of the models.

3.1. Varying Chaplygin Gas Pde = Aρde − BH−n

ρα
de

We start the study from the models where the varying Chaplygin gas, Equation (8),
interacts with cold dark matter and the the forms of non-linear interactions are defined
from Equation (20).

3.1.1. Interaction Q = 3Hb
(

ρde +
ρ2

dm
ρde+ρdm

)

The first cosmological model we study is a model where the interaction between the
varying Chaplygin gas, Equation (8), and cold dark matter is given as

Q = 3Hb

(
ρde +

ρ2
dm

ρde + ρdm

)
, (26)

and real critical points are presented in Table 1.

Table 1. Critical points corresponding to interacting varying Chaplygin gas, Equation (8), for the
non-gravitational interaction Q given by Equation (26).

S.P. x y Type of Stability

E.1.1 b−1+
√

1+(2−3b)b
2b

−1 stable node

E.1.2 A−b+
√

(A−b)(A+3b)
2(A−b)

A(A−b+
√

(A−b)(A+3b))
2(A−b)

unstable node

E.1.3 A−b−
√

(A−b)(A+3b)
2(A−b)

A(A−b−
√

(A−b)(A+3b))
2(A−b)

stable focus
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In this case, 3 different physically reasonable critical points exist and only two of
them are stable (E.1.1 and E.1.3). However only the critical point E.1.1 due to imposed
constraints is a late time scaling attractor with

r =
Ωdm
Ωde

=
1− b−

√
1 + (2− 3b)b

2(b− 1)
, (27)

tending to a constant. For this model the decelerated parameter is q = −1 and ωe f f = −1,
while the EoS parameter of the varying Chaplygin gas Equation (8) reads as

ωde = −
2b

b− 1 +
√

1 + (2− 3b)b
(28)

It is not hard to see that considering varying Chaplygin gas, Equation (8), is a phantom
dark energy. Discussed behavior is obtained when the parameters satisfy to Equations (21)
and (22) and 0 < b < 2/3. The critical point E.1.3 will be stable when 0 < α ≤ 1, 0 ≤ n ≤ 5,
b = 0 and A > 1+ α + n/2. This solution describes a matter dominate state of the universe,
since x = 0, and in such universe the accelerated expansion is not possible. Therefore, only
E.1.1 will be the physically reasonable solution where the universe will reach starting from
the state described by E.1.2.

3.1.2. Interaction Q = 3Hb
(

ρde +
ρdmρde

ρde+ρdm

)

In the second model the interaction between varying Chaplygin, gas Equation (8), and
cold dark matter is taken to be

Q = 3Hb
(

ρde +
ρdmρde

ρde + ρdm

)
. (29)

In this case, physically reasonable two critical points exist and they are presented in
Table 2. The study shows that E.2.1 is a physically reasonable solution, moreover, it is a late
time scaling attractor when 0 ≤ n ≤ 5, 0 < α ≤ 1, A ≥ 0 and 0 < b < 2/3. This solution
represents a state of the universe where varying Chaplygin gas, Equation (8), is a phantom
dark energy with

ωc = −
1 + 2b +

√
1 + 4b2

2
(30)

This model is free from the cosmological coincidence problem due to

r =
Ωdm
Ωde

=
2b− 1 +

√
1 + 4b2

2
. (31)

Critical point E.2.2 is physically reasonable solution when b = 0 i.e., x = 1 and y = A
(when A > 0), and this is a state of the universe where the accelerated expansion is not
possible. Moreover, the varying Chaplygin gas, Equation (8), is a usual fluid and completely
dominates the dynamics of the universe. As was expected E.2.2 is not a stable critical
point. Figure 1 represents the phase space portraits for E.1.2 and E.2.1 critical points. For a
symmetry in plots, we considered −1 ≤ x ≤ 1 interval, however, we should remember
that x ∈ (0, 1].

Table 2. Critical points corresponding to interacting varying Chaplygin gas, Equation (8), for the
non-gravitational interaction Q given by Equation (29).

S.P. x y Type of Stability

E.2.1 1+2b−
√

1+4b2

2b
−1 stable node

E.2.2 A+2b
A+b

A(A+2b)
A+b

unstable node
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Figure 1. Phase space portraits for interacting varying Chaplygin gas, Equation (8). The left plot
represents the model where the non-gravitational interaction Q is given by Equation (26). The right
plot represents the model where the non-gravitational interaction Q is given by Equation (29).

3.1.3. Interaction Q = 3Hb
(

ρde + ρdm +
ρ2

dm
ρde+ρdm

)

Another cosmological model has been studied in this paper assuming the interaction
term Q has the following form

Q = 3Hb

(
ρde + ρdm +

ρ2
dm

ρde + ρdm

)
. (32)

In this case, 3 critical points are physically acceptable (among 4 critical points) pre-
sented in Table 3. The critical point E.3.1 is a late time scaling solution since

r =
Ωdm
Ωde

=

√
1− 4b2

2(1− 2b)
− 1

2
, (33)

and represents the state of the universe, where the varying Chaplygin gas Equation (8) is
phantom dark energy with

ωde = −
2b

2b− 1 +
√

1− 4b2
. (34)

This is a late time attractor when 0 ≤ n ≤ 5, 0 < b ≤ 2/5, 0 < α ≤ 1. On the
other hand, the critical points E.3.2 and E.3.3 are physically reasonable when b = 0 and
the critical points are unstable. The phase portrait indicates that in considered case the
evolution of the universe started from one of the unstable states (either E.3.2 or E.3.3)
eventually will evolve to the state described by E.3.1 solution. It is not hard to see that in
case of E.3.3 the universe will be in a matter dominating state and the accelerated expansion
is not possible. In considered 3 models of this subsection we observed, that appropriate late
time scaling attractors describe the state of the universe with phantom varying Chaplygin
gas Equation (8). Moreover, the solution of the cosmological coincidence problem exists.
Therefore, it is important to learn the constraints on the free parameters to have better
understanding of the models. To this we will come in the second part of this work.
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Table 3. Critical points corresponding to interacting varying Chaplygin gas, Equation (8), for the
non-gravitational interaction Q given by Equation (32).

S.P. x y Type of Stability

E.3.1 2b−1+
√

1−4b2

2b
−1 stable node

E.3.2 A−2b+
√

A2+4Ab−4b2

2(A−b)
A(A−2b+

√
A2+4Ab−4b2)

2(A−b)
unstable node

E.3.3 A−2b−
√

A2+4Ab−4b2

2(A−b)
A(A−2b−

√
A2+4Ab−4b2)

2(A−b)
unstable node or unstable focus

3.2. Varying Chaplygin Gas Pde = Aρde − Ba−n

ρα
de

In Sections 3.1.1–3.1.3 we considered cosmological models where varying Chaplygin
gas was given by Equation (8). In the next three subsections we will consider cosmological
models, where varying Chaplygin gas is given by Equation (9).

3.2.1. Interaction Q = 3Hb
(

ρde +
ρ2

dm
ρde+ρdm

)

The model with the varying Chaplygin gas, Equation (9), when non-gravitational
interaction is given by Equation (26) has 4 critical points (Table 4, where E.4.3 is not
physically reasonable solution). The study shows that the considered model has only one
conditional late time attractor corresponding to E.4.4 solution. Moreover, the study shows
that for imposed constraints on the parameters of the model we will obtain the states of
the universe with a quintessence varying Chaplygin gas, Equation (9). However, for some
combinations of the values of the free parameters (from initial constraints imposed on
the parameters) E.4.4 solution can describe the state of the universe where the varying
Chaplygin gas, Equation (9), is a phantom. Observed dual possibility shows an interesting
departure of this model from previously considered models. Moreover, we found that the
late time attractor E.4.4 is scaling attractor. In particular, to simplify the analysis, let us
demonstrate that E.4.4 is a scaling attractor when 0 ≤ b ≤ 1/10 and n = 1. It is easy to see,
that in this case, the attractor E.4.4 is scaling because

r =
Ωdm
Ωde

=
1
2

(
−1 +

2 + 3α + 9b(1 + α)√
(2 + 3α− 3b(1 + α))(2 + 3α + 9b(1 + α))

)
. (35)

Moreover, considered constraints on the parameters provide the deceleration parameter q

q = −1 +
1

2(1 + α)
, (36)

to be 0 < q ≤ −1. On the other hand, we can see that the varying Chaplygin gas,
Equation (9), is a quintessence dark energy with

ωde = −
2b(2 + 3α)

3b(1 + α)− 2− 3α +
√
(2− 3b− 3α(b− 1))(2 + 3α + 9b(1 + α))

. (37)

The solution of the cosmological coincidence problem in form Equation (35) is different
from the solutions presented in Section 3.1 and clearly demonstrates that the solution can
be obtained due to the non-gravitational interaction. In summary, starting the evolution
from one of the initial states described by E.4.1 and E.4.2, the universe eventually will end
up on the state described by E.4.4.
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Table 4. Critical points corresponding to interacting varying Chaplygin gas,
Equation (9), for the non-gravitational interaction Q given by Equation (26).
r̂ =

√
(n− 3(1 + α)(1 + 3b))(n− 3(1 + α)(1− b)).

S.P. x y Type of Stability

E.4.1 A−b+
√

(A−b)(A+3b)
2(A−b)

A(A−b+
√

(A−b)(A+3b))
2(A−b)

unstable node

E.4.2 A−b−
√

(A−b)(A+3b)
2(A−b)

A(A−b−
√

(A−b)(A+3b))
2(A−b)

unstable node

E.4.3 n+3(b−1)(1+α)−r̂
6b(1+α)

−1 + n
3(1+α)

–

E.4.4 n+3(b−1)(1+α)+r̂
6b(1+α)

−1 + n
3(1+α)

stable node or stable focus

3.2.2. Interaction Q = 3Hb
(

ρde +
ρdmρde

ρde+ρdm

)

The three critical points obtained for the cosmological model with the varying Chap-
lygin gas, Equation (9), and non-gravitational interaction Q, Equation (29), are presented
in Table 5.

Table 5. Critical points corresponding to interacting varying Chaplygin gas, Equation (9), for the
non-gravitational interaction Q given by Equation (29), where r̂ =

√
3bb2(1 + α)2 + (n− 3(1 + α))2.

S.P. x y Type of Stability

E.5.1 A+2b
A+b

A(A+2b)
A+b

unstable node

E.5.2 3(1+2b)(1+α)−n−r̂
6b(1+α)

−1 + n
3(1+α)

stable node

E.5.3 3(1+2b)(1+α)−n+r̂
6b(1+α)

−1 + n
3(1+α)

–

The study shows that the late time attractor E.5.2 can represent the states of the
universe where the varying Chaplygin gas, Equation (9), either is a quintessence dark
energy (Table 6) or a a phantom dark energy (Table 7) depends on the values of the
parameters of the model (the general constraints on the parameters are the same as in
previous cases).

Table 6. Constraints on the model parameters for the interacting varying Chaplygin gas, Equation (9),
with non-gravitational interaction term Q given by Equation (29). E.5.2 describes the state of the
universe where the varying Chaplygin gas is a quintessence dark energy.

n α b

0 < n ≤ 3
2 0 ≤ α ≤ 1 0 < b ≤ n

3α+n+3
3
2 < n < 2 0 ≤ α ≤ 1

3 (2n− 3) 0 < b ≤ 6α−2n+6
9α+9

3
2 < n < 2 1

3 (2n− 3) < α ≤ 1 0 < b ≤ n
3α+n+3

2 ≤ n ≤ 3 n−2
2 < α ≤ 1

3 (2n− 3) 0 < b ≤ 6α−2n+6
9α+9

2 ≤ n ≤ 3 1
3 (2n− 3) < α ≤ 1 0 < b ≤ n

3α+n+3
3 < n < 4 n−2

2 < α ≤ 1 0 < b ≤ 6α−2n+6
9α+9

Table 7. Constraints on the model parameters for the interacting varying Chaplygin gas, Equation (9),
with non-gravitational interaction term Q given by Equation (29). E.5.2 describes the state of the
universe where the varying Chaplygin gas, Equation (9), is a phantom dark energy.

n α b

n = 0 0 ≤ α ≤ 1 0 < b < 6α+6
9α+9

0 < n < 3
2 0 ≤ α ≤ 1 n

3α+n+3 < b ≤ 6α−2n+6
9α+9

3
2 ≤ n < 3 1

3 (2n− 3) < α ≤ 1 n
3α+n+3 < b ≤ 6α−2n+6

9α+9

The phase space portrait of this models shows that for imposed constraints, the
evaluation of the universe will start from the state described by E.5.1 (unstable node) and



Symmetry 2021, 13, 769 10 of 19

will reach to the state one described by E.5.2 (stable node). On the other hand, E.5.3 is
physically not reasonable solution, while E.5.2 is a scaling attractor

r =
3(1− 2b)(1 + α)− n− r̂

2(n− 3(1 + α))
, (38)

with
q = −1 +

n
2(1 + α)

, (39)

ωe f f = −1 +
n

3(1 + α)
, (40)

ωde = −
3(1 + 2b)(1 + α)− n + r̂

6(1 + α)
, (41)

where r̂ =
√

3bb2(1 + α)2 + (n− 3(1 + α))2.

3.2.3. Interaction Q = 3Hb
(

ρde + ρdm +
ρ2

dm
ρde+ρdm

)

The 4 critical points presented in Table 8 describe the model with interacting vary-
ing Chaplygin gas, Equation (9), when the non-gravitational interaction is given by
Equation (32). The study shows that only the critical point E.6.4 is late time attractor
describing the state of the universe with

q = −1 +
n

2(1 + α)
, (42)

ωe f f = −1 +
n

3(1 + α)
, (43)

ωde =
2b(n− 3(1 + α))

n + 3(−1 + 2b)(1 + α) + r̂
. (44)

Moreover, it is a scaling attractor and the solution of the cosmological coincidence
problem reads as

r = −1
2
− r̂

2(n− 3(−1 + 2b)(1 + α))
, (45)

where r̂ =
√
−3bb2(1 + α)2 + (n− 3(1 + α))2. Similar to the other two models considered

in this subsection, E.6.4 solution can describe the state of the universe where interacting
varying Chaplygin gas, Equation (9), is either a phantom dark energy or a quintessence
dark energy. In particular, the constraints on the model parameters presented in Table 9
describe the universe where the varying Chaplygin gas, Equation (9), is a phantom dark
energy. It should be mentioned that E.6.3 is physically not reasonable solution, while E.6.2
is a stable focus and does not describe the accelerated expansion.

Definitely the phase space analysis reveals that the models are very interesting. How-
ever, as it is mentioned earlier we have to impose some empirical constraints on the free
parameters in order to reduce the phase space size. Definitely it simplifies the discussion.
However, we should wonder whether or not we assumed reasonable constraints for the
free parameters. In order to understand this, in the second part of this paper, we will apply
Bayesian Machine Learning to learn the constraints. The detailed analysis is presented in
the next section. The general philosophy behind the approach can be found in [32,35,37,38]).
Following earlier works we also use PyMC3 to perform the analysis and learning process.
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Table 8. Critical points corresponding to interacting varying Chaplygin gas, Equation (9), for the non-
gravitational interaction Q given by Equation (32), where r̂ =

√
−3bb2(1 + α)2 + (n− 3(1 + α))2.

S.P. x y Type of Stability

E.6.1 A−2b+
√

A2+4Ab−4b2

2(A−b)
A(A−2b+

√
A2+4Ab−4b2)

2(A−b)
unstable node

E.6.2 A−2b−
√

A2+4Ab−4b2

2(A−b)
A(A−2b+

√
A2+4Ab−4b2)

2(A−b)
stable focus

E.6.3 n+3(−1+2b)(1+α)−r̂
6b(1+α)

−1 + n
3(1+α)

-

E.6.4 n+3(−1+2b)(1+α)+r̂
6b(1+α)

−1 + n
3(1+α)

stable node or stable focus

Table 9. Constraints on the model parameters for the interacting varying Chaplygin gas, Equation (9),
with the non-gravitational interaction term Q given by Equation (32). E.6.4 describes the state of the
universe where the varying Chaplygin gas, Equation (9), is a phantom dark energy.

n α b

n = 0 0 ≤ α ≤ 1 0 < b < 18α2+36α+18
45α2+90α+45

0 < n < 3
2 0 ≤ α ≤ 1 −n2+3αn+3n

9α2+18α+n2+9 < b ≤ 6α−2n+6
15α+15

3
2 ≤ n < 3 1

3 (2n− 3) < α ≤ 1 −n2+3αn+3n
9α2+18α+n2+9 < b ≤ 6α−2n+6

15α+15

4. Constraints from Bayesian Machine Learning

In the first part of this paper we discussed the phase space analysis of the models.
It appears possible to find all critical points analytically allowing to discuss conditional
critical points and attractors. The last means that for imposed constraints some of the
obtained solutions can serve as attractors and have specific type of stability, which can be
changed when another set of constraints on the model free parameters will be imposed. A
necessity somehow to constrain the possible parameter space and decrease the uncertainty
we applied the Bayesian Machine Learning. We will omit all technical details behind this
approach referring the readers to several recent papers [32,35,37,38]) for more details. The
crucial aspect of this approach to be mentioned is the option connecting posterior and
prior without a need to evaluate the likelihood. This allows us to depart from the real
observational data concept and use simulated one. It is obvious that the method is good
for forecasting purposes too. However, the validation of the learned result, as in the case of
any other Machine Learning approach is required. In this early stage of analysis we used
the background dynamics of each model to generate only the expansion rate data used for
the learning process. Therefore available expansion rate data presented in Table 10 has
been used during the result validating process. It should be mentioned that our interest
to the expansion rate data is due to the estimation of H(z) from the cosmic chronometers.
Since they are model independent estimations then there is a possibility to learn features
of the models not depending on the features of the other models used to extract H(z)
data. However, the analogues of other observations can be crafted/generated and used to
learn the constraints, too. This and other interesting questions for this moment have not
been studied. They have been left to be tackled in forthcoming papers. In the next two
subsections we will discuss learned constraints and see whether or not the models can be
used to solve the H0 problem (see [15–18] for more details).
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Table 10. H(z) and its uncertainty σH are in the units of km s−1 Mpc−1. The upper panel consists
of thirty samples deduced from the differential age method. The lower panel corresponds to ten
samples obtained from the radial BAO method. The table is according to [13] (see also references
therein for details).

z H(z) σH z H(z) σH

0.070 69 19.6 0.4783 80.9 9
0.090 69 12 0.480 97 62
0.120 68.6 26.2 0.593 104 13
0.170 83 8 0.680 92 8
0.179 75 4 0.781 105 12
0.199 75 5 0.875 125 17
0.200 72.9 29.6 0.880 90 40
0.270 77 14 0.900 117 23
0.280 88.8 36.6 1.037 154 20
0.352 83 14 1.300 168 17

0.3802 83 13.5 1.363 160 33.6
0.400 95 17 1.4307 177 18

0.4004 77 10.2 1.530 140 14
0.4247 87.1 11.1 1.750 202 40
0.44497 92.8 12.9 1.965 186.5 50.4

0.24 79.69 2.65 0.60 87.9 6.1
0.35 84.4 7 0.73 97.3 7.0
0.43 86.45 3.68 2.30 224 8
0.44 82.6 7.8 2.34 222 7
0.57 92.4 4.5 2.36 226 8

4.1. Varying Chaplygin Gas Pde = Aρde − BH−n

ρα
de

We start with the case where the dark energy model is given by Equation (8). We took
into account Equations (3), (6) and (7) to construct the background dynamics used in the
generative process. We considered three forms of non-gravitational interaction given by
Equations (26), (29) and (32) respectively to complete the field equations. Assuming that
we have cold dark matter with Pdm = 0 we learned the constraints on 7 free parameters
in each case using generated expansion rate data. The learned constrained can be found
in Table 11. During the learning process we imposed H0 ∈ [64.0, 80.0], A ∈ [−2.5, 0.5],
B ∈ [−1.0, 2.5], n ∈ [−2.5, 2.5], α ∈ [−0.5, 1.5], b ∈ [−0.3, 0.3] and Ωdm ∈ [0.1, 0.45] flat
priors on free parameters. The results presented below are from the analysis based on
10 chains and in each chain, 10,000 “observational” data-sets from the models have been
simulated. After a very detailed analysis of our results we found that:

• When the interaction is given by Equation (26) the learned best fit values for the model
free parameters with 1σ error are: H0 = 68.44± 0.36 km s−1 Mpc−1, A = −1.27± 0.05,
B = 1.41 ± 0.05, n = −0.0015 ± 0.15, α = 0.5 ± 0.15, b = 0.016 ± 0.005 and
Ωdm = 0.268± 0.009. The contour map is given in Figure 2, in purple colour.

• On the other hand, the interaction is given by Equation (29) the learned best fit values
for the model free parameters with 1σ error are: H0 = 68.45± 0.35 km s−1 Mpc−1,
A = −1.26± 0.06, B = 1.41 ± 0.05, n = 0.00037 ± 0.15 & α = 0.5 ± 0.15,
b = 0.013± 0.005 and Ωdm = 0.263± 0.008. The contour map is given in Figure 2, in
orange colour.

• Finally, when the interaction is given by Equation (32) the learned best fit values
for the model free parameters with 1σ error are: H0 = 68.57± 0.35 km s−1 Mpc−1,
A = −0.91± 0.06, B = 1.41± 0.05, n = 0.00098± 0.15, α = 0.5± 0.15, b = 0.02± 0.005
and Ωdm = 0.247± 0.014. The contour map is given in Figure 2, in red colour.

As we see the models cannot solve the H0 tension problem. Moreover, we found a
hint that the model with interaction given by Equation (32) should be ruled out due to
very low Ωdm. Moreover, all of them are in huge tension with high redshift expansion rate
data and non of them can explain the BOSS experiment results [94]. Another interesting
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result to be mentioned is about the learned constraints for free parameter n. We see that the
learned best fit value of it can be negative for the model with Equation (26) interaction term.
In general, during our analysis we learned that the expansion rate data will not put tight
constraints on it. On the other hand, this gives a hint that considered constraints on the
free parameters during the phase space analysis just allows partially cover the phase space
of the models. However, we obtained all critical points analytically, therefore with future
improved new tight constraints on the free parameters we can explore phase space regions
more carefully. To summarize the results of the learning process we can say that there is
a hint that all three models should be ruled out. One thing is clear that still additional
analysis is needed for the final conclusion.

Table 11. Best fit values and 1σ errors estimated for the Model given by Equation (8), when z ∈ [0, 2.5].
The results have been obtained from a Bayesian Machine Learning approach, where the interaction Q
is given by Equation (26) (first row), Equation (29) (second row) and Equation (32) (third row), respec-
tively. Moreover, when the interaction is given by Equation (26) we obtained Ωdm = 0.268± 0.009,
while when the interaction is given by Equation (29) Ωdm = 0.263± 0.008 has been obtained. Finally,
Ωdm = 0.247± 0.014 has been obtained when the interaction has been given by Equation (32). We
used H0 ∈ [64.0, 80.0], A ∈ [−2.5, 0.5], B ∈ [−1.0, 2.5], n ∈ [−2.5, 2.5], α ∈ [−0.5, 1.5], b ∈ [−0.3, 0.3]
and Ωdm ∈ [0.1, 0.45] flat priors. The analysis is based on 10 chains and in each chain, 10,000 “obser-
vational” data-sets from the models have been simulated. H0 and its uncertainty σ are in the units
of km s−1 Mpc−1.

H0 A B n α b

68.44± 0.36 −1.27± 0.05 1.41± 0.05 −0.0015± 0.15 0.5± 0.15 0.016± 0.005
68.45± 0.35 −1.26± 0.06 1.41± 0.05 0.00037± 0.15 0.5± 0.15 0.013± 0.005
68.57± 0.35 −0.91± 0.06 1.41± 0.05 0.00098± 0.15 0.5± 0.15 0.02± 0.005
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)

Figure 2. Contour maps of the model given by Equation (8) for z ∈ [0, 2.5]. The best fit values of the
model parameters have been found and presented in Table 11. In all three cases, H0 ∈ [64.0, 80.0],
A ∈ [−2.5, 0.5], B ∈ [−1.0, 2.5], n ∈ [−2.5, 2.5], α ∈ [−0.5, 1.5], b ∈ [−0.3, 0.3] and Ωdm ∈ [0.1, 0.45]
flat priors have been imposed during the generative process used to generate the “observational”
data. The analysis is based on 10 chains and, in each chain, 10,000 “observational” data-sets from the
model have been generated.
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4.2. Varying Chaplygin Gas Pc = Aρc − Ba−n

ρα
c

Finally, we analyzed the model where the dark energy is given by Equation (9). Again,
we took into account Equations (3), (6) and (7) to construct the background dynamics used
in the generative process. In this case, also we considered three forms of non-gravitational
interaction given by Equations (26), (29) and (32) respectively. Assuming that we have cold
dark matter with Pdm = 0 we learned the constraints on 7 free parameters in each case using
generated expansion rate data. Similar to the first case, during the learning process we
imposed H0 ∈ [64.0, 80.0], A ∈ [−2.5, 0.5], B ∈ [−1.0, 2.5], n ∈ [−2.5, 2.5], α ∈ [−0.5, 1.5],
b ∈ [−0.3, 0.3] and Ωdm ∈ [0.1, 0.45] flat priors on free parameters. The results presented
below are from the analysis based on 10 chains and in each chain, 10,000 “observational”
data-sets from the models have been simulated. The learned constrained can be found
in Table 12 and to simplify our discussion we present them below. In particular, using
Bayesian Machine Learning based on generated expansion rate data we found that:

• When the interaction is given by Equation (26) the learned best fit values for the model
free parameters with 1σ error are: H0 = 68.53± 0.35 km s−1 Mpc−1, A = −0.91± 0.06,
B = 1.11± 0.05 & n = −3.7× 10−5 ± 0.15, α = 0.75± 0.15, b = 0.016± 0.005 and
Ωdm = 0.233± 0.012. The contour map is given in Figure 3, in purple colour.

• On the other hand, the interaction is given by Equation (29) the learned best fit values
for the model free parameters with 1σ error are: H0 = 68.58± 0.34 km s−1 Mpc−1,
A = −0.89 ± 0.06, B = 1.09 ± 0.05, n = 0.0026 ± 0.15 & α = 0.75 ± 0.15,
b = 0.015± 0.005 and Ωdm = 0.229± 0.012. The contour map is given in Figure 3, in
orange colour.

• Finally, when the interaction is given by Equation (32) the learned best fit values
for the model free parameters with 1σ error are: H0 = 68.65± 0.35 km s−1 Mpc−1,
A = −0.77 ± 0.05, B = 1.09 ± 0.05, n = 0.0015 ± 0.15, α = 0.75 ± 0.15,
b = 0.019± 0.005 and Ωdm = 0.215± 0.017. The contour map is given in Figure 3, in
red colour.

Again we see the models cannot solve the H0 tension problem. Moreover, we found a
hint that the models should be ruled out due to very low Ωdm. Moreover, all of them are
in huge tension with high redshift expansion rate data and non of them can explain the
BOSS experiment results. In other words, the models considered in this subsection should
be rejected. We would like to mention that the learning based on generated other data
sets can induce a significant clarification on this issue, therefore an additional analysis is
still required before the final rejection of the models. It has been left to be discussed in a
forthcoming paper.

Table 12. Best fit values and 1σ errors estimated for the Model given by Equation (9), when z ∈ [0, 2.5]. The results
have been obtained from a Bayesian Machine Learning approach, where the interaction Q is given by Equation (26) (first
row), Equation (29) (second row) and Equation (32) (third row), respectively. Moreover, when the interaction is given by
Equation (26) we obtained Ωdm = 0.233± 0.012, while when the interaction is given by Equation (29) Ωdm = 0.229± 0.012
has been obtained. Finally, Ωdm = 0.215± 0.017 has been obtained when the interaction has been given by Equation (32).
We used H0 ∈ [64.0, 80.0], A ∈ [−2.5, 0.5], B ∈ [−1.0, 2.5], n ∈ [−2.5, 2.5], α ∈ [−0.5, 1.5], b ∈ [−0.3, 0.3] and Ωdm ∈ [0.1, 0.45]
flat priors. The analysis is based on 10 chains and in each chain, 10,000 “observational” data-sets from the models have been
simulated. H0 and its uncertainty σ are in the units of km s−1 Mpc−1.

H0 A B n α b

68.53± 0.35 −0.91± 0.06 1.11± 0.05 −3.7× 10−5 ± 0.15 0.75± 0.15 0.016± 0.005
68.58± 0.34 −0.89± 0.06 1.09± 0.05 0.0026± 0.15 0.75± 0.15 0.015± 0.005
68.65± 0.35 −0.77± 0.05 1.09± 0.05 0.0015± 0.15 0.75± 0.15 0.019± 0.005
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Figure 3. Contour maps of the model given by Equation (9) for z ∈ [0, 2.5]. The best fit values of the
model parameters have been found and presented in Table 12. In all three cases, H0 ∈ [64.0, 80.0],
A ∈ [−2.5, 0.5], B ∈ [−1.0, 2.5], n ∈ [−2.5, 2.5], α ∈ [−0.5, 1.5], b ∈ [−0.3, 0.3] and Ωdm ∈ [0.1, 0.45]
flat priors have been imposed during the generative process used to generate the “observational”
data. The analysis is based on 10 chains and, in each chain, 10,000 “observational” data-sets from the
model have been generated.

5. Conclusions

In this paper, we considered six different cosmological scenarios. Three different
forms of the interaction term Q have been used to model non-gravitational interaction
supposedly existing between dark energy and cold dark matter. The Chaplyging gas (and
its various modifications) is still among very actively considered dark energy gas/fluid
models. Actually two modifications of it has been considered. In particular, with specific
phenomenological assumptions about its free parameter it is possible to construct new
interesting modifications. Following to this approach, in this work we considered two
models where two parametrizations of B are taken into account. We performed the phase
space analysis of all models. In all cases, late time scaling attractors have been found
analytically and by imposing empirical constraints their nature have been explored. In
particular, it has been found that for the first type of cosmological models the late time
scaling attractors describe the state of the universe where varying Chaplygin gas has only
a phantom nature. On the other hand, the study of the second class of models shows that
for some values of the model free parameters the varying Chaplygin gas will be a phantom
dark energy, while for some cases it will be a quintessence dark energy. An interesting result
that has not been observed during the study of the first model. Moreover, in the second
part of the paper we applied Bayesian Machine Learning approach to learn the constraints
on the model parameters. It is a good way to understand the models and extract additional
information justifying the reason specific phenomenological modifications should exist.
On the other hand, it appears to be very useful for future studies pointing out the shape of
the parameter space. In our analysis the background dynamics of each model has been
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used to generate the expansion rate data to be used in the learning process. We have a very
brief discussion on this, referring the reader to a series of papers demonstrating how the
Bayesian Machine Learning can be used to achieve very interesting and unique results.
The results from the Bayesian Machine Learning based on generated expansion rate data
revealed interesting results. In particular, the results of our analysis showed that it is very
hard to say the models eventually should be rejected or not. However, we found a hint that
they should be rejected since (1) they cannot solve the H0 tension problem, and (2) there is
a huge tension between learned and observational results at high redshifts. However, we
need to take into account that the learned constraints indicate—the expansion rate data is
not good to learn the constraints on the model free parameters. It can be that the learning
process based on other generated data sets can do the job better and eventually it would be
possible to learn tight constraints on the parameters. This among other problems has been
left to be tackled in forthcoming papers. In this stage of the analysis the Bayesian Machine
Learning indicates several interesting aspects of considered varying Chaplygin gas models.
One of them is related to the forms of non-gravitational interaction. In particular, a recent
analysis of [37] demonstrated that a deviation form cold dark matter paradigms can easily
be confused with non-gravitational interaction between dark energy and dark matter. In
this regard, we need to mention that a similar situation could be observed here too. In
this case, if it is true, then we can significantly reduce the phenomenology and craft new
cosmological models with varying Chaplygin gas, where the model rejection question
will be more transparent and easily understandable. Our initial attempts to study the
Chaplygin gas with Machine Learning approaches are very promising and should be
extended, revealing whether or not it can be really used to unify dark energy and dark
matter. Other interesting questions related to this issue we left to be tackled in the future
papers. In general with future research we still need to understand whether or not the
expansion rate data can capture the features of non-linear non-gravitational interaction
between dark energy and dark matter properly. In addition, if it cannot, then how to be
with the bias that can be introduced in the analysis where the expansion rate data has been
used with other observational data sets and the features of the non-gravitational interaction
have been captured?

In summary, the Bayesian Machine Learning reveals that something is not smooth with
varying Chaplygin gas models we considered here. However, a final conclusion requires
additional work which can provide a fresh look at (varying) Chaplygin gas cosmology and
significantly reduce so far existing phenomenology.
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