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Abstract: In this paper, we review the so-called Myrzakulov Gravity models (MG-N, with N = I, II, . . . ,
VIII) and derive their respective metric-affine generalizations (MAMG-N), discussing also their
particular sub-cases. The field equations of the theories are obtained by regarding the metric tensor
and the general affine connection as independent variables. We then focus on the case in which the
function characterizing the aforementioned metric-affine models is linear and consider a Friedmann-
Lemaître–Robertson–Walker background to study cosmological aspects and applications. Historical
motivation for this research is thoroughly reviewed and specific physical motivations are provided
for the aforementioned family of alternative theories of gravity.
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1. Introduction

In the 20th century, physics experienced extraordinary progress with the formulation
of General Relativity (GR), Einstein’s well-celebrated theory of gravity. However, despite
its great success and solid predictive power, GR is not devoid of limitations, which manifest
as shortages at both very small and large scales [1,2], along with contradictions between
theory and observations. In particular, the flaws of GR at large scales are grievous given
that gravity appears to be the force that rules cosmic evolution. In this context, GR is indeed
unable to explain the observed late-time accelerated expansion of the universe. Another
problematic point is the inability of GR to explicate the rotational curves of galaxies without
the need for dark matter. Further open issues which highly involve gravity at cosmological
scales and are related to each other include the horizon and so-called flatness problem,
cosmic inflation and early universe, size, origin and future of the latter, the abundant and
mysterious dark energy, the cosmological constant and coincidence problems.

Consequently, many physicists will agree that gravity, even though related to phe-
nomena that we experience in everyday life, still stands as the most enigmatic of the
fundamental interactions. The lack of a clear understanding of gravity has led over the
years to the formulation of disparate alternative theoretical frameworks, which collectively
go by the name of modified gravity [3]. In fact, the terminologies “alternative theory of
gravity” and “modified gravity” have become standard for gravitational theories differing
from the most conventional one, where the latter is considered to be GR (whose rigorous
mathematical formulations resides in Riemannian geometry). The literature on the sub-
ject is huge. Let us mention, for instance, (Palatini and metric-affine) f (R) gravity [4–8],
teleparallel f (T) gravity theories [9,10], symmetric teleparallel f (Q) gravity [11,12], and
scalar-tensor theories [13,14]. Here, let us mention that teleparallel theories of gravity are
typically “gauge” theories of gravity. (We put the word “gauge” in inverted commas as,
commonly, gravitational theories are invariant under diffeomorphisms by construction, but
they are not invariant under spacetime translations. Thus, they are not true gauge theory
of the associated group considered. However, we shall adopt the terminology “gauge
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theory of gravity” since it is widely used in the literature, keeping in mind that in fact, in
that case we just have diffeomorphisms invariance rather than invariance under spacetime
translations.) On one hand, one can fix a priori symmetries and form of the connection in
such a way to determine the explicit form of torsion (cf., e.g., [15]) or nonmetricity in terms
of what turns out to be the dynamical field (i.e., in the tetrads formalism, the vielbein).
On the other hand, one can start with no a priori assumption on the symmetries of the
connection which, however, is related to non-Riemannian quantities by the definition of
the field-strengths associated with the gauge group at hand. By contrast, in this review we
will consider gravitational theories out of this gauge realm, as we will further discuss in
the following.

In the context of modified gravity, a wide part of the physics scientific community
claims that the understanding and solution to open issues regarding the gravitational
interaction may need generalizations and extensions of Riemannian geometry. It is well-
known that one way to go beyond Riemannian geometry is to release the Riemannian
assumptions of metric compatibility and torsionlessness of the connection and therefore
allow, as we have already anticipated above, for non-vanishing torsion and nonmetricity
(along with curvature). This is the framework of non-Riemannian geometry (Regarding
non-Riemannian geometry, we refer the reader to [16,17]. Moreover, we highlight [18] for
a recent review of Einstein manifolds with torsion and nonmetricity and applications in
physics (for further interesting applications cf., for instance, [19] and references therein).)
and, in particular, the “geometric arena” where Metric-Affine Gravity (MAG) theories are
developed [20–23]. Let us stress that even if the metric-affine approach has been widely
used to interpret gravity as a gauge theory, there is no conceptual or physical problem in
studying metric-affine theories outside this realm. This is in fact what we are going do in
the present paper, where we will not deal with gauge theories of gravity. Specifically, we
will work in the first order formalism, considering the metric and the connection a priori as
independent, without assuming any symmetry or constraint on the connection from the
very beginning. In this setting, the final form of the connection in terms of non-Riemannian
objects is then obtained from the study of the field equations of the theory.

MAGs in the first order formalism are gravitational theories alternative to GR ex-
hibiting a very general setup, with the potential of properly describing various physical
scenarios, where the metric and the general affine connection (i.e., involving, in princi-
ple, torsion and nonmetricity) are considered, a priori, as independent. In particular, no
symmetry is imposed a priori on the connection. An additional motivation for studying
MAG theories emerges when one considers coupling with matter, as the matter Lagrangian
depends on the connection as well. Therefore, in MAG there is a new physical object that
comes into play when varying the matter part of the action with respect to the connection,
which is the so-called hypermomentum tensor [24–26], which encompasses the microscopic
characteristics of matter. In this setup, the energy-momentum tensor sources spacetime
curvature by means of the metric field equations, while the hypermomentum is source of
spacetime torsion and nonmetricity through the connection field equations.

Following the line of thought based on the idea that considering alternative geometric
frameworks one can effectively gain better insights towards a deeper and more complete
understanding of gravity than the one provided by GR, in this paper we collect and review
a rather general class of gravity theories, the so-called Myrzakulov Gravity (MG) models,
in the literature also referred to as MG-N, N = I, II, . . . , VIII [27], and derive their respective
metric-affine generalizations, which will go by the name of Metric-Affine Myrzakulov
Gravity (MAMG) models. The action of MG theories is characterized by a generic function
F of non-Riemannian scalars (the scalar curvature of the general affine connection, the
torsion scalar, the nonmetricity scalar, and, moreover, the energy-momentum trace), which
takes different form depending on the specific model. Moreover, in the metric-affine
framework one may generalize the theories by including a dependence on the divergence
of the dilation current, the latter being a trace of the hypermomentum tensor, in F. We
will consider four spacetime dimensions and work in the first order (Palatini) formalism,
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where the metric tensor gµν and the general affine connection Γλ
µν are treated, a priori,

as independent variables, following the lines of [28]. Subsequently, we will focus on
the case in which the function characterizing the aforementioned metric-affine models
is linear and consider a Friedmann-Lemaître–Robertson–Walker (FLRW) background to
study cosmological aspects.

The paper is organized as follows: In Sections 2–9 we review the MG-N models
and present their respective metric-affine generalizations (MAMG-N), together with their
particular sub-cases, while Section 10 is devoted to the study of a non-Riemannian cos-
mological setup in which, in particular, we derive the modified Friedmann equations for
the linear MAMG-N theories and discuss cosmological applications of the results (another
application is also presented in Appendix C). In Section 11 we make some final remark and
discuss possible future developments. In Appendix A we collect notation, conventions,
definitions, and useful MAG formulas, while Appendix B gathers key expressions in the
context of cosmology with torsion and nonmetricity in a homogeneous, non-Riemannian
FLRW spacetime.

2. MG-I and MAMG-I

We first describe the MG-I model. Its action reads [27]

S (I)[g, Γ, ϕ] =
1

2κ

∫ √
−gd4x[F(R, T) + 2κLm] , (1)

where κ = 8πG is the gravitational constant, R is the curvature scalar of the general
affine connection Γλ

µν involving torsion and nonmetricity and T is the torsion scalar (see
Appendix A). In Equation (1), F = F(R, T) is a generic function of R and T. In fact, the
MG-I model represents an extension of both the F(R) and F(T) gravity theories. The
action (1) depends on the metric field gµν, the affine connection Γλ

µν, and the matter fields,
collectively denoted by ϕ, appearing in the matter Lagrangian Lm.

The variation of (1) with respect to the metric field yields

− 1
2

gµνF + F′RR(µν) + F′T
(

2SναβSµ
αβ − SαβµSαβ

ν + 2SναβSµ
βα − 4SµSν

)
= κTµν , (2)

where R(µν) is the symmetric part of the Ricci tensor of Γ, Sµν
λ is the torsion tensor, Sµ

is the torsion trace, Tµν is the energy-momentum tensor (cf. the respective definitions in
Appendix A), and F′R := ∂F

∂R , F′T := ∂F
∂T . (Here and in the following we adopt the notation

F′X := ∂F
∂X to denote the derivative of F with respect to any scalar X of which F is function.)

On the other hand, the connection field equations are

Pλ
µν(F′R) + 2F′T

(
Sµν

λ − 2Sλ
[µν] − 4S[µδ

ν]
λ

)
= 0 , (3)

where Pλ
µν(F′R) is the modified Palatini tensor,

Pλ
µν(F′R) := −

∇λ(
√−gF′Rgµν)√−g

+
∇α

(√−gF′Rgµαδν
λ

)
√−g

+ 2F′R(Sλgµν − Sµδν
λ − Sλ

µν) , (4)

being ∇ the covariant derivative associated with the general affine connection Γ.
For some cosmological implications of the MG-I model we refer the reader to [29,30],

while observational constraints on the theory were studied in [31]. We will come back to
these points in Section 10.

2.1. Metric-Affine Generalizations of the MG-I Model

As we have already mentioned in the introduction, in the metric-affine setup the matter
Lagrangian depends on the connection as well. In this framework, the theory is assumed
to have, in principle, a non-vanishing hypermomentum tensor, ∆λ

µν := − 2√−g
δ(
√−gLm)

δΓλ
µν

,
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which is one of the sources of MAG theories (along with the energy-momentum tensor, cf.
Appendix A). The hypermomentum has a direct physical interpretation when split into
its irreducible pieces of spin, dilation, and shear [24–26]. Moreover, as observed in [28], in
the metric-affine setup one may also consider the function F appearing in the various MG
models to depend on the contribution

D :=
1√−g

∂ν

(√
−g∆ν

)
, (5)

where
∆ν := ∆µ

µν (6)

is the dilation current. (In particular, the energy-momentum trace T := gµνTµν and D can
be placed on an equal footing (see [28] for details). The first, in fact, will appear in the
MG-IV, MG-VI, MG-VII, and MG-VIII theories and in their metric-affine generalization, in
which case we will also include the D contribution.)

Taking all of this into account, the MAMG-I action, which is the metric-affine general-
ization of (1), reads as follows:

S (I)MAMG =
1

2κ

∫ √
−gd4x[F(R, T,D) + 2κLm] , (7)

where we have also introduced a dependence on D in the function F.
The metric field equations of the theory are

− 1
2

gµνF + F′RR(µν) + F′T
(

2SναβSµ
αβ − SαβµSαβ

ν + 2SναβSµ
βα − 4SµSν

)
+ F′DMµν = κTµν , (8)

where
Mµν :=

δD
δgµν , (9)

while the variation of (7) with respect to the general affine connection Γλ
µν yields

Pλ
µν(F′R) + 2F′T

(
Sµν

λ − 2Sλ
[µν] − 4S[µδ

ν]
λ

)
−Mλ

µνρ∂ρF′D = κ∆λ
µν , (10)

where we have defined
Mλ

µνρ :=
δ∆ρ

δΓλ
µν

. (11)

Let us mention, here, that one could also consider a “minimal” metric-affine generalization
of the MG-I theory, obtained without including a dependence onD in the function F. In this
case, the metric field equations would coincide with those of the MG-I model, namely (2),
while the connection field equations would be

Pλ
µν(F′R) + 2F′T

(
Sµν

λ − 2Sλ
[µν] − 4S[µδ

ν]
λ

)
= κ∆λ

µν , (12)

as we still have the hypermomentum contribution obtained by varying the matter La-
grangian Lm with respect to the connection. The same result is obtained for specific matter
such that ∆ν = 0. (In fact, for specific matter one has an explicit, specific expression for the
whole ∆λ

µν).

2.2. Particular Sub-Cases of the MAMG-I Theory

In this subsection we collect some particular sub-cases of the MAMG-I model. In each
sub-case, if we remove the dependence of the matter Lagrangian on the general affine
connection, we are left with the respective sub-case of the MG-I model. We have already
mentioned above one sub-case, corresponding to the minimal MAMG-I theory (minimal
metric-affine generalization of MG-I), that is the metric-affine F(R, T) theory. Let us discuss
other sub-cases in the following.
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2.2.1. Metric-Affine F(R) Theory

First, we restrict ourselves to F(R, T,D)→ F(R), i.e., we assume that F is independent
of the torsion scalar T and we also remove the D dependence in F. Then, the MAMG-I
model reduces to the well-known metric-affine F(R) gravity. The action of the theory has
the form

SF(R) =
1

2κ

∫ √
−gd4x[F(R) + 2κLm] , (13)

where R is the curvature scalar of the general affine connection. The variation of the
action (13) with respect to the metric and the affine connection gives the following set of
field equations:

− 1
2

gµνF + F′RR(µν) = κTµν ,

Pλ
µν(F′R) = κ∆λ

µν ,
(14)

where Pλ
µν(F′R) is the modified Palatini tensor defined in (4).

2.2.2. Metric-Affine F(T) Theory

Now we assume that F(R, T,D)→ F(T). This corresponds to the metric-affine F(T)
theory, which is another sub-case of the MAMG-I model. The action of the theory reads

SF(T) =
1

2κ

∫ √
−gd4x[F(T) + 2κLm] , (15)

where T is the torsion scalar. Varying the action (15) with respect to the metric field and
the general affine connection, we obtain

− 1
2

gµνF + F′T
(

2SναβSµ
αβ − SαβµSαβ

ν + 2SναβSµ
βα − 4SµSν

)
= κTµν ,

2F′T
(

Sµν
λ − 2Sλ

[µν] − 4S[µδ
ν]
λ

)
= κ∆λ

µν ,
(16)

respectively. Here observe that defining a specific form for the connection from the very
beginning, as done in [15], where the Weitzenböck connection [32] was considered, in F(T)
gravity one could then derive the Einstein equations for the metric field by exploiting
the tetrads formalism, i.e., introducing the vielbein vector with the use of its component
form Va = Vµ

a ∂µ, with a = 0, 1, 2, 3, and expressing the torsion in terms of the latter.
(For a discussion on the degrees of freedom in F(T) gravity we refer the reader to [15].)
Nevertheless, recall that here we are not assuming a specific form for the connection a
priori and we are not dealing with a gauge theory of gravity. In our formalism, the final
form of the connection arises when one studies in detail the field equations of the theory for
given matter field contents, i.e., once the explicit expression of ∆λ

µν is consequently found.
Hence, torsion and, in particular, hypermomentum variables (i.e., sources) encode the full
dynamics of the theory. Notice that analogous arguments apply to the F(Q) (sub-)case we
will briefly review in Section 3.

2.2.3. Metric-Affine F(R,D) Theory

Let us now restrict ourselves to F(R, T,D) → F(R,D), i.e., we assume that F is
independent of the torsion scalar T. In this case, the MAMG-I model boils down to
the metric-affine F(R,D) theory, which is an extension of the F(R) gravity involving a
dependence on the divergence of the dilation current D in F. The action of the model at
hand has the form

SF(R,D) =
1

2κ

∫ √
−gd4x[F(R,D) + 2κLm] . (17)
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The variation of the action (17) with respect to the metric and the general affine connection
gives the following set of field equations:

− 1
2

gµνF + F′RR(µν) + F′DMµν = κTµν ,

Pλ
µν(F′R)−Mλ

µνρ∂ρF′D = κ∆λ
µν ,

(18)

with Pλ
µν(F′R) defined in (4), while Mµν and Mλ

µνρ are given by (9) and (11), respectively.

2.2.4. Metric-Affine F(T,D) Theory

Considering F(R, T,D)→ F(T,D), the MAMG-I model reduces to the metric-affine
F(T,D) theory, which, in turn, is an extension of the F(T) theory involving a dependence
on the divergence of the dilation current in F. The action of the theory reads

SF(T,D) =
1

2κ

∫ √
−gd4x[F(T,D) + 2κLm] , (19)

where T is the torsion scalar and D the divergence of the dilation current. Varying the
action (19) with respect to the metric and the general affine connection, we find

− 1
2

gµνF + F′T
(

2SναβSµ
αβ − SαβµSαβ

ν + 2SναβSµ
βα − 4SµSν

)
+ F′DMµν = κTµν ,

2F′T
(

Sµν
λ − 2Sλ

[µν] − 4S[µδ
ν]
λ

)
−Mλ

µνρ∂ρF′D = κ∆λ
µν ,

(20)

respectively.

3. MG-II and MAMG-II

In this section, we start from the description of the MG-II theory and subsequently
generalize it by considering a metric-affine setup. The action of the MG-II model is [27]

S (II)[g, Γ, ϕ] =
1

2κ

∫ √
−gd4x[F(R, Q) + 2κLm] . (21)

It is an extension of both the F(R) and F(Q) theories. Indeed, the function F = F(R, Q)
in (21) is a generic function of the scalar curvature R (of the general affine connection Γ)
and of Q, where Q is the nonmetricity scalar (cf. Appendix A).

The metric field equations of the theory read as follows:

− 1
2

gµνF + F′RR(µν) + F′QL(µν) + ∇̂λ

(
F′Q Jλ

(µν)

)
+ gµν∇̂λ

(
F′Qζλ

)
= κTµν , (22)

having defined

∇̂λ :=
1√−g

(2Sλ −∇λ) (23)

and

Lµν :=
1
4

[(
Qµαβ − 2Qαβµ

)
Qν

αβ +
(
Qµ + 2qµ

)
Qν +

(
2Qµνα −Qαµν

)
Qα
]

− Ξαβ
νQαβµ − ΞαµβQαβ

ν ,

Jλ
µν :=

√
−g
(

1
4

Qλ
µν −

1
2

Qµν
λ + Ξλ

µν

)
,

ζλ :=
√
−g
(
−1

4
Qλ +

1
2

qλ

)
,

(24)

where Qλµν is the nonmetricity tensor, Qλ and qλ are its trace parts (see Appendix A), and
Ξλµν is the so-called (nonmetricity) “superpotential” defined in the first line of (A15).
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The connection field equations are

Pλ
µν(F′R) + F′Q

[
2Q[νµ]

λ −Qλ
µν + (qν −Qν)δ

µ
λ + Qλgµν +

1
2

Qµδν
λ

]
= 0 , (25)

where Pλ
µν(F′R) is given by (4).

3.1. Metric-Affine Generalizations of the MG-II Model

We can now move on to the metric-affine generalization of the MG-II theory. Hence,
taking into account the discussion in Section 2, one may write the MAMG-II action
as follows:

S (II)MAMG =
1

2κ

∫ √
−gd4x[F(R, Q,D) + 2κLm] , (26)

where, in particular, we have introduced in F a dependence on D, the latter being the
divergence of the dilation current, defined in Equation (5).

The variation of (26) with respect to the metric yields

− 1
2

gµνF + F′RR(µν) + F′QL(µν) + ∇̂λ

(
F′Q Jλ

(µν)

)
+ gµν∇̂λ

(
F′Qζλ

)
+ F′DMµν = κTµν , (27)

where Mµν has been defined in (9).
On the other hand, the connection field equations of the MAMG-II theory read

Pλ
µν(F′R) + F′Q

[
2Q[νµ]

λ −Qλ
µν + (qν −Qν)δ

µ
λ + Qλgµν +

1
2

Qµδν
λ

]
−Mλ

µνρ∂ρF′D = κ∆λ
µν , (28)

where Mλ
µνρ is given by (11). Analogously to what we have mentioned in Section 2 for the

N = I case, one might also consider a minimal metric-affine generalization of the MG-II
theory, excluding the D dependence in the function F. Then, the metric field equations
would coincide with (22), while the connection field equations would be

Pλ
µν(F′R) + F′Q

[
2Q[νµ]

λ −Qλ
µν + (qν −Qν)δ

µ
λ + Qλgµν +

1
2

Qµδν
λ

]
= κ∆λ

µν . (29)

The same result can be obtained for specific matter couplings fulfilling ∆ν = 0.

3.2. Particular Sub-Cases of the MAMG-II Theory

Here we collect some particular sub-cases of the MAMG-II theory. In each sub-case,
if we remove the dependence of the matter Lagrangian on the general affine connection,
we are left with the respective sub-case of the MG-II model. We have already mentioned
above one sub-case, corresponding to the minimal MAMG-II model (minimal metric-affine
generalization of MG-II), i.e., the metric-affine F(R, Q) theory. The other two sub-cases
correspond to the metric-affine F(R) and F(R,D) theories previously discussed (cf. (13)
and (17), respectively). Let us report in the following also other two sub-cases.

3.2.1. Metric-Affine F(Q) Theory

We first restrict ourselves to F(R, Q,D)→ F(Q), i.e., we assume that F is independent
of the scalar curvature R and we also remove the D dependence in F. With this assumption
the MAMG-II model reduces to the metric-affine F(Q) theory, whose action is

SF(Q) =
1

2κ

∫ √
−gd4x[F(Q) + 2κLm] , (30)
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where Q is the nonmetricity scalar. The variation of the action (30) with respect to the
metric and the affine connection gives the following set of field equations:

− 1
2

gµνF + F′QL(µν) + ∇̂λ

(
F′Q Jλ

(µν)

)
+ gµν∇̂λ

(
F′Qζλ

)
= κTµν ,

F′Q

[
2Q[νµ]

λ −Qλ
µν + (qν −Qν)δ

µ
λ + Qλgµν +

1
2

Qµδν
λ

]
= κ∆λ

µν ,
(31)

with Lµν, Jλ
µν, and ζλ given by (24). Here one could then apply arguments analogous to

those made in the case of the F(T) theory.

3.2.2. Metric-Affine F(Q,D) Theory

On the other hand, considering F(R, Q,D) → F(Q,D), the MAMG-II model boils
down to the metric-affine F(Q,D) theory, which, in turn, is an extension of the F(Q) theory
above involving a dependence on the divergence of the dilation current in F. The action of
the metric-affine F(Q,D) model has the following form:

SF(Q,D) =
1

2κ

∫ √
−gd4x[F(Q,D) + 2κLm] , (32)

where Q is the nonmetricity scalar and D the divergence of the dilation current. Varying
the action (32) with respect to the metric and the general affine connection, we obtain the
set of field equations

− 1
2

gµνF + F′QL(µν) + ∇̂λ

(
F′Q Jλ

(µν)

)
+ gµν∇̂λ

(
F′Qζλ

)
+ F′DMµν = κTµν ,

F′Q

[
2Q[νµ]

λ −Qλ
µν + (qν −Qν)δ

µ
λ + Qλgµν +

1
2

Qµδν
λ

]
−Mλ

µνρ∂ρF′D = κ∆λ
µν ,

(33)

with Mµν and Mλ
µνρ given by (9) and (11), respectively.

4. MG-III and MAMG-III

Let us start by describing the MG-III theory, whose action is [27]

S (III)[g, Γ, ϕ] =
1

2κ

∫ √
−gd4x[F(T, Q) + 2κLm] . (34)

In this model, the function F = F(T, Q) is a generic function of the torsion scalar T and the
nonmetricity scalar Q. The action (34) is an extension of both the F(T) and F(Q) theories.

Varying (34) with respect to the metric field we obtain

− 1
2

gµνF + F′T
(

2SναβSµ
αβ − SαβµSαβ

ν + 2SναβSµ
βα − 4SµSν

)
+ F′QL(µν)

+ ∇̂λ

(
F′Q Jλ

(µν)

)
+ gµν∇̂λ

(
F′Qζλ

)
= κTµν ,

(35)

where ∇̂ is given by (23), while the tensor Lµν and the tensor and vector densities Jλ
µν and

ζλ, respectively, are defined in (24).
On the other hand, from the variation of (34) with respect to the general affine connec-

tion Γλ
µν we obtain

2F′T
(

Sµν
λ − 2Sλ

[µν] − 4S[µδ
ν]
λ

)
+ F′Q

[
2Q[νµ]

λ −Qλ
µν + (qν −Qν)δ

µ
λ + Qλgµν +

1
2

Qµδν
λ

]
= 0 . (36)

We can now move on to the metric-affine generalization of the theory.
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Metric-Affine Generalizations of the MG-III Model

The action of the MAMG-III model is

S (III)MAMG =
1

2κ

∫ √
−gd4x[F(T, Q,D) + 2κLm] , (37)

where D is defined in (5).
The metric field equations of the theory read

− 1
2

gµνF + F′T
(

2SναβSµ
αβ − SαβµSαβ

ν + 2SναβSµ
βα − 4SµSν

)
+ F′QL(µν)

+ ∇̂λ

(
F′Q Jλ

(µν)

)
+ gµν∇̂λ

(
F′Qζλ

)
+ F′DMµν = κTµν ,

(38)

where Mµν is given by (9).
The connection field equations are

2F′T
(

Sµν
λ − 2Sλ

[µν] − 4S[µδ
ν]
λ

)
+ F′Q

[
2Q[νµ]

λ −Qλ
µν + (qν −Qν)δ

µ
λ + Qλgµν +

1
2

Qµδν
λ

]
−Mλ

µνρ∂ρF′D = κ∆λ
µν ,

(39)

where Mλ
µνρ is defined in (11). There also exists a minimal metric-affine generalization of

the MG-III theory, which excludes the D dependence in the function F. In this minimal
case, the metric field equations coincide with (35), while the connection field equations are

2F′T
(

Sµν
λ − 2Sλ

[µν] − 4S[µδ
ν]
λ

)
+ F′Q

[
2Q[νµ]

λ −Qλ
µν + (qν −Qν)δ

µ
λ + Qλgµν +

1
2

Qµδν
λ

]
= κ∆λ

µν .
(40)

The same equations can be obtained considering some specific matter couplings,
always in the metric-affine framework, such that ∆ν = 0.

Let us conclude this section by mentioning that there are other particular sub-cases,
besides the metric-affine F(T, Q) one above, of the MAMG-III model, corresponding to
the metric-affine F(T), F(T,D), F(Q), and F(Q,D) theories previously discussed (cf.,
respectively, (15), (19), (30), and (32)). (In each sub-case, removing the dependence of the
matter Lagrangian on the general affine connection, one is left with the respective sub-case
of the MG-III model).

5. MG-IV and MAMG-IV

We first describe the MG-IV theory, whose action is [27]

S (IV)[g, Γ, ϕ] =
1

2κ

∫ √
−gd4x[F(R, T, T ) + 2κLm] , (41)

where F = F(R, T, T ) is a generic function of the scalar curvature R, the torsion scalar
T, and the energy-momentum trace T := gµνTµν. The MG-IV model extends the F(R, T )
(cf. [33]), F(T), F(R), and F(T, T ) (cf. [34]) theories. In particular, (41) represents an
extension of the MG-I theory, as it also involves a dependence on T in F.

The metric field equations of (41) are

− 1
2

gµνF + F′RR(µν) + F′T
(

2SναβSµ
αβ − SαβµSαβ

ν + 2SναβSµ
βα − 4SµSν

)
+ F′T

(
Θµν + Tµν

)
= κTµν ,

(42)
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where ∇̂ is defined in (23), Lµν, Jλ
µν and ζλ are given in (24), and

Θµν := gαβ
δTαβ

δgµν . (43)

The connection field equations read as follows:

Pλ
µν(F′R) + 2F′T

(
Sµν

λ − 2Sλ
[µν] − 4S[µδ

ν]
λ

)
= 0 , (44)

where Pλ
µν(F′R) is defined in (4). Here, observe that (44) coincides with the connection field

Equation (3) of the MG-I theory. This is so due to the fact that in the MG theories matter
does not couple to the connection and, therefore, the dependence on T in F does not affect
the connection field equations. Accordingly, we have no contribution to the connection
field equations from the matter Lagrangian Lm.

5.1. Metric-Affine Generalizations of the MG-IV Model

Following the discussion in Section 2, we write the MAMG-IV action as follows:

S (IV)
MAMG =

1
2κ

∫ √
−gd4x[F(R, T, T ,D) + 2κLm] , (45)

where D is the hypermomentum trace given by (5). In particular, here the energy-
momentum trace T and the divergence of the dilation current D are placed on an equal
footing (cf. [28]).

Varying the action (45) with respect to the metric field we obtain

− 1
2

gµνF + F′RR(µν) + F′T
(

2SναβSµ
αβ − SαβµSαβ

ν + 2SναβSµ
βα − 4SµSν

)
+ F′T

(
Θµν + Tµν

)
+ F′DMµν = κTµν ,

(46)

with Mµν and Θµν defined in (9) and (43), respectively.
On the other hand, the variation of (45) with respect to the general affine connection

Γλ
µν yields

Pλ
µν(F′R) + 2F′T

(
Sµν

λ − 2Sλ
[µν] − 4S[µδ

ν]
λ

)
−Mλ

µνρ∂ρF′D = F′T Θλ
µν + κ∆λ

µν , (47)

where Mλ
µνρ is given by (11) and

Θλ
µν := − δT

δΓλ
µν

. (48)

The latter appears in (47) since, in the metric-affine setup, the energy-momentum trace T
may have, in principle, a non-trivial dependence on the hypermomentum tensor. Please
note that if matter does not couple to the connection (which is the case, for instance,
of a classical perfect fluid with no inner structure) one has Θλ

µν = 0, ∆λ
µν = 0, and

Mλ
µνρ = 0 (together with D = 0, i.e., no hypermomentum contribution also in the

metric field equations). Let us mention that one can also consider a minimal metric-affine
generalization of the MG-IV theory, excluding the D dependence in the function F. The
metric field equations, in this case, would coincide with (42), while the connection field
equations would be

Pλ
µν(F′R) + 2F′T

(
Sµν

λ − 2Sλ
[µν] − 4S[µδ

ν]
λ

)
= F′T Θλ

µν + κ∆λ
µν . (49)

The same result would follow from some specific matter fulfilling ∆ν = 0. Observe that if
Θλ

µν = 0 the connection field equations (47) reduce to (10), which are those of the MAMG-I
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theory. Analogously, if Θλ
µν = 0, then (49) boil down to (12), namely to the connection

field equations of the minimal MAMG-I model.

5.2. Particular Sub-Cases of the MAMG-IV Theory

Regarding the MAMG-IV model, here we discuss its sub-cases. Two of them are the
minimal MAMG-IV model, minimal metric-affine generalization of MG-IV, i.e., the metric-
affine F(R, T, T ) theory, and, of course, the minimal MAMG-I model, minimal metric-affine
generalization of MG-I, i.e., the metric-affine F(R, T) theory. The other sub-cases consist of
the F(R), F(T), F(R,D), and F(T,D) theories we described earlier (cf. (13), (15), (17), and
(19), respectively). Let us briefly sketch other four sub-cases in the following. In each of
the MAMG-IV sub-cases, if we remove the dependence of the matter Lagrangian on the
general affine connection, we are left with the respective sub-cases of the MG-IV model.

5.2.1. Metric-Affine F(R, T ) Theory

Let us consider F(R, T, T ,D) → F(R, T ). Then, the MAMG-IV model reduces to
the metric-affine F(R, T ) theory [33], which is also an extension of the metric-affine F(R)
gravity including a dependence on the energy-momentum trace T in F. The action of the
theory has the form

SF(R,T ) =
1

2κ

∫ √
−gd4x[F(R, T ) + 2κLm] , (50)

where R is the curvature scalar of the general affine connection. The variation of the
action (50) with respect to the metric and the affine connection gives the following set of
field equations:

− 1
2

gµνF + F′RR(µν) + F′T
(
Θµν + Tµν

)
= κTµν ,

Pλ
µν(F′R) = F′T Θλ

µν + κ∆λ
µν ,

(51)

where Pλ
µν(F′R) is the modified Palatini tensor defined in (4), while Θµν and Θλ

µν are given
by Equations (43) and (48), respectively.

5.2.2. Metric-Affine F(T, T ) Theory

On the other hand, considering F(R, T, T ,D)→ F(T, T ), the MAMG-IV model boils
down to the metric-affine F(T, T ) theory [34], which is also an extension of the metric-affine
F(T) model as it includes a dependence on the energy-momentum trace T in F as well.
The action of the metric-affine F(T, T ) theory reads

SF(T,T ) =
1

2κ

∫ √
−gd4x[F(T, T ) + 2κLm] , (52)

where T is the torsion scalar. From the variation of the action (52) with respect to the metric
and the general affine connection we obtain

− 1
2

gµνF + F′T
(

2SναβSµ
αβ − SαβµSαβ

ν + 2SναβSµ
βα − 4SµSν

)
+ F′T

(
Θµν + Tµν

)
= κTµν ,

2F′T
(

Sµν
λ − 2Sλ

[µν] − 4S[µδ
ν]
λ

)
= F′T Θλ

µν + κ∆λ
µν ,

(53)

respectively.

5.2.3. Metric-Affine F(R, T ,D) Theory

Now, we consider the sub-case in which F(R, T, T ,D)→ F(R, T ,D), i.e., we exclude
only the T dependence in F. In this case, the MAMG-IV theory reduces to the metric-affine
F(R, T ,D) theory, which is an extension of the metric-affine F(R, T ) model (50) with the
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inclusion of a dependence on the divergence of the dilation current in F. The action of the
metric-affine F(R, T ,D) theory is given by

SF(R,T ,D) =
1

2κ

∫ √
−gd4x[F(R, T ,D) + 2κLm] . (54)

The variation of (54) with respect to the metric and the affine connection gives the following
set of field equations:

− 1
2

gµνF + F′RR(µν) + F′T
(
Θµν + Tµν

)
+ F′DMµν = κTµν ,

Pλ
µν(F′R)−Mλ

µνρ∂ρF′D = F′T Θλ
µν + κ∆λ

µν ,
(55)

with Pλ
µν(F′R) defined in (4), while Mµν, Mλ

µνρ, Θµν, and Θλ
µν are given in Equations (9),

(11), (43), and (48), respectively.

5.2.4. Metric-Affine F(T, T ,D) Theory

Finally, taking F(R, T, T ,D) → F(T, T ,D), the MAMG-IV theory reduces to the
metric-affine F(T, T ,D) model, extension of the metric-affine F(T, T ) theory (52) with the
inclusion of a dependence on the divergence of the dilation current in F. The action of the
metric-affine F(T, T ,D) theory reads

SF(T,T ,D) =
1

2κ

∫ √
−gd4x[F(T, T ,D) + 2κLm] . (56)

The variation of (56) with respect to the metric and the general affine connection yields

− 1
2

gµνF + F′T
(

2SναβSµ
αβ − SαβµSαβ

ν + 2SναβSµ
βα − 4SµSν

)
+ F′T

(
Θµν + Tµν

)
+ F′DMµν

= κTµν ,

2F′T
(

Sµν
λ − 2Sλ

[µν] − 4S[µδ
ν]
λ

)
−Mλ

µνρ∂ρF′D = F′T Θλ
µν + κ∆λ

µν ,

(57)

respectively.

6. MG-V and MAMG-V

In this section, we start from the description of the MG-V model and then generalize
the latter in the metric-affine framework. The MG-V action is given by [27]

S (V)[g, Γ, ϕ] =
1

2κ

∫ √
−gd4x[F(R, T, Q) + 2κLm] . (58)

The MG-V model is an extension of the F(R), F(T), and F(Q) theories. In particular,
it represents an extension of the MG-I model also involving a dependence on Q in F,
and an extension of the MG-II theory as well, involving a dependence on T in F. In
fact, F = F(R, T, Q) is a generic function of the scalar curvature R of the general affine
connection Γλ

µν, the torsion scalar T, and the nonmetricity scalar Q.
The variation of (58) with respect to the metric field yields

− 1
2

gµνF + F′RR(µν) + F′T
(

2SναβSµ
αβ − SαβµSαβ

ν + 2SναβSµ
βα − 4SµSν

)
+ F′QL(µν)

+ ∇̂λ

(
F′Q Jλ

(µν)

)
+ gµν∇̂λ

(
F′Qζλ

)
= κTµν ,

(59)

where ∇̂ is defined in (23), while the tensor Lµν and the densities Jλ
µν and ζλ are given

by (24).
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The equations obtained by varying the action (58) with respect to the general affine
connection Γλ

µν read as follows:

Pλ
µν(F′R) + 2F′T

(
Sµν

λ − 2Sλ
[µν] − 4S[µδ

ν]
λ

)
+ F′Q

[
2Q[νµ]

λ −Qλ
µν + (qν −Qν)δ

µ
λ + Qλgµν +

1
2

Qµδν
λ

]
= 0 ,

(60)

where Pλ
µν(F′R) is the modified Palatini tensor defined in (4).

Metric-Affine Generalizations of the MG-V Model

We can now move on to the metric-affine generalization of the MG-V theory. Hence,
in accordance with the discussion in Section 2, let us write the MAMG-V action as

S (V)
MAMG =

1
2κ

∫ √
−gd4x[F(R, T, Q,D) + 2κLm] , (61)

where D is defined in (5).
The variation of (61) with respect to the metric yields

− 1
2

gµνF + F′RR(µν) + F′T
(

2SναβSµ
αβ − SαβµSαβ

ν + 2SναβSµ
βα − 4SµSν

)
+ F′QL(µν)

+ ∇̂λ

(
F′Q Jλ

(µν)

)
+ gµν∇̂λ

(
F′Qζλ

)
+ F′DMµν = κTµν ,

(62)

where Mµν is given by (9).
The connection field equations of the theory read

Pλ
µν(F′R) + 2F′T

(
Sµν

λ − 2Sλ
[µν] − 4S[µδ

ν]
λ

)
+ F′Q

[
2Q[νµ]

λ −Qλ
µν + (qν −Qν)δ

µ
λ + Qλgµν +

1
2

Qµδν
λ

]
−Mλ

µνρ∂ρF′D = κ∆λ
µν ,

(63)

with Mλ
µνρ defined in (11). Analogously to what we have seen for the previous models,

here we mention that a minimal metric-affine generalization of the MG-V theory might also
be considered, in which the function F does not exhibits a dependence on the divergence
of the dilation current D. In the minimal case the metric field equations boil down to (59)
and the connection field equations become

Pλ
µν(F′R) + 2F′T

(
Sµν

λ − 2Sλ
[µν] − 4S[µδ

ν]
λ

)
+ F′Q

[
2Q[νµ]

λ −Qλ
µν + (qν −Qν)δ

µ
λ + Qλgµν +

1
2

Qµδν
λ

]
= κ∆λ

µν ,
(64)

One can end up with the same equations by considering some specific matter coupling,
always in the metric-affine setup, satisfying ∆ν = 0.

Always concerning the MAMG-V theory, besides the sub-case we have already men-
tioned above, corresponding to the minimal MAMG-V model (minimal metric-affine
generalization of MG-V, which is the metric-affine F(R, T, Q) theory), we also have the
following sub-cases: the metric-affine F(R), F(T), F(Q) and F(R,D), F(T,D), F(Q,D)
theories, the metric-affine F(R, T) model (minimal MAMG-I), the metric-affine F(R, Q)
one (minimal MAMG-II), the metric-affine F(T, Q) theory (minimal MAMG-III), and the
metric-affine F(R, T,D), F(R, Q,D), F(T, Q,D) models (corresponding, respectively, to
MAMG-I, MAMG-II, and MAMG-III). In each sub-case, if we remove the dependence of
the matter Lagrangian on the general affine connection, we are left with the respective
sub-case of the MG-V theory.



Symmetry 2021, 13, 1855 14 of 41

7. MG-VI and MAMG-VI

Here we start with the action of the MG-VI model, which reads [27]

S (VI)[g, Γ, ϕ] =
1

2κ

∫ √
−gd4x[F(R, Q, T ) + 2κLm] , (65)

where F = F(R, Q, T ) is a generic function of the scalar curvature R of the general affine
connection Γ, Q is the nonmetricity scalar, and T is the energy-momentum trace. The
action (65) represents and extension of the F(R, T ), F(Q), F(R), and F(Q, T ) (cf. [35])
theories. In particular, (65) is an extension of the action (21) of the MG-II model, as it
includes a dependence on T in F.

The metric field equations of the theory are given by

− 1
2

gµνF + F′RR(µν) + F′QL(µν) + ∇̂λ

(
F′Q Jλ

(µν)

)
+ gµν∇̂λ

(
F′Qζλ

)
+ F′T

(
Θµν + Tµν

)
= κTµν , (66)

where ∇̂ is given by (23), Lµν, Jλ
µν, ζλ are defined in (24), while Θµν is defined in (43).

The connection field equations read

Pλ
µν(F′R) + F′Q

[
2Q[νµ]

λ −Qλ
µν + (qν −Qν)δ

µ
λ + Qλgµν +

1
2

Qµδν
λ

]
= 0 , (67)

where Pλ
µν(F′R) is defined in (4). Please note that (67) coincides with the connection field

equations (25) of the MG-II model, which is a consequence of the fact that in the MG
theories matter does not couple to the connection Γ.

7.1. Metric-Affine Generalizations of the MG-VI Model

Now, we construct the metric-affine generalization of the MG-VI theory, i.e., we allow
matter to couple to the general affine connection Γλ

µν. On the same lines of what we have
done in the previous sections, we write the MAMG-VI action as

S (VI)
MAMG =

1
2κ

∫ √
−gd4x[F(R, Q, T ,D) + 2κLm] , (68)

where as usual, D is the divergence of the dilation current defined in (5). In (68) the
energy-momentum trace T and D are placed on an equal footing.

Varying the action (68) with respect to the metric field we obtain

− 1
2

gµνF + F′RR(µν) + F′QL(µν) + ∇̂λ

(
F′Q Jλ

(µν)

)
+ gµν∇̂λ

(
F′Qζλ

)
+ F′T

(
Θµν + Tµν

)
+ F′DMµν

= κTµν ,
(69)

where we recall that Mµν is given by (9).
On the other hand, the variation of (68) with respect to Γλ

µν yields

Pλ
µν(F′R) + F′Q

[
2Q[νµ]

λ −Qλ
µν + (qν −Qν)δ

µ
λ + Qλgµν +

1
2

Qµδν
λ

]
−Mλ

µνρ∂ρF′D

= F′T Θλ
µν + κ∆λ

µν ,
(70)

where Mλ
µνρ and Θλ

µν are defined in (11) and (48), respectively. One can also consider a
minimal metric-affine generalization of the MG-VI theory, excluding the D dependence in
the function F. In this case, the metric field equations would coincide with (66), while the
connection field equations would be

Pλ
µν(F′R) + F′Q

[
2Q[νµ]

λ −Qλ
µν + (qν −Qν)δ

µ
λ + Qλgµν +

1
2

Qµδν
λ

]
= F′T Θλ

µν + κ∆λ
µν . (71)
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The same result would follow by considering some specific matter fulfilling ∆ν = 0. Let
us also notice that if Θλ

µν = 0 the connection field equations (70) reduce to those of the
MAMG-II theory, namely (28). Analogously, if Θλ

µν = 0 then (71) boil down to (29), i.e., to
the connection field equations of the minimal MAMG-II model.

7.2. Particular Sub-Cases of the MAMG-VI Theory

Regarding the MAMG-VI theory, besides the sub-case we have already mentioned
above, corresponding to the minimal MAMG-VI model (minimal metric-affine generaliza-
tion of MG-VI, which is the metric-affine F(R, Q, T ) theory), we also have the following
sub-cases: the metric-affine F(R), F(Q) and F(R,D), F(Q,D) theories, the metric-affine
F(R, Q) model (minimal MAMG-II), the metric-affine F(R, T ) and F(R, T ,D) theories
(cf. (50) and (54), respectively), and the metric-affine F(R, Q,D) model (i.e., MAMG-II). For
the sake of completeness, let us finally report in the following other two sub-cases, namely
the metric-affine F(Q, T ) and F(Q, T ,D) theories. In each of these sub-cases, removing
the dependence of the matter Lagrangian on the general affine connection, one is left with
the respective sub-cases of the MG-VI theory.

7.2.1. Metric-Affine F(Q, T ) Theory

Restricting ourselves to F(R, Q, T ,D)→ F(Q, T ), the MAMG-VII model boils down
to the metric-affine F(Q, T ) theory, whose action reads

SF(Q,T ) =
1

2κ

∫ √
−gd4x[F(Q, T ) + 2κLm] , (72)

where Q is the nonmetricity scalar and T the energy-momentum trace. The variation of
the action (72) with respect to the metric and the affine connection gives the following set
of field equations:

− 1
2

gµνF + F′QL(µν) + ∇̂λ

(
F′Q Jλ

(µν)

)
+ gµν∇̂λ

(
F′Qζλ

)
+ F′T

(
Θµν + Tµν

)
= κTµν ,

F′Q

[
2Q[νµ]

λ −Qλ
µν + (qν −Qν)δ

µ
λ + Qλgµν +

1
2

Qµδν
λ

]
= F′T Θλ

µν + κ∆λ
µν ,

(73)

where Lµν, Jλ
µν, and ζλ have been defined in (24), while Θµnu and Θλ

µν are given by
Equations (43) and (48), respectively.

7.2.2. Metric-Affine F(Q, T ,D) Theory

On the other hand, considering F(R, Q, T ,D) → F(Q, T ,D), namely excluding the
dependence on the scalar curvature R in the MAMG-VI model, the latter reduces to the
metric-affine F(Q, T ,D) theory, which, in turn, is an extension of the F(Q, T ) theory above
involving a dependence on the divergence of the dilation current in F as well. The action
of the metric-affine F(Q, T ,D) model has the following form:

SF(Q,T ,D) =
1

2κ

∫ √
−gd4x[F(Q, T ,D) + 2κLm] , (74)

where Q is the nonmetricity scalar, T the energy-momentum trace, and D the divergence
of the dilation current. Varying the action (74) with respect to the metric and the general
affine connection, we obtain the set of field equations

− 1
2

gµνF + F′QL(µν) + ∇̂λ

(
F′Q Jλ

(µν)

)
+ gµν∇̂λ

(
F′Qζλ

)
+ F′T

(
Θµν + Tµν

)
+ F′DMµν = κTµν ,

F′Q

[
2Q[νµ]

λ −Qλ
µν + (qν −Qν)δ

µ
λ + Qλgµν +

1
2

Qµδν
λ

]
−Mλ

µνρ∂ρF′D = F′T Θλ
µν + κ∆λ

µν ,
(75)

with Mµν and Mλ
µνρ given by (9) and (11), respectively.
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8. MG-VII and MAMG-VII

In this section, we first consider the MG-VII theory and subsequently generalize it by
considering a metric-affine setup. The MG-VII action [27] reads as follows:

S (VII)[g, Γ, ϕ] =
1

2κ

∫ √
−gd4x[F(T, Q, T ) + 2κLm] , (76)

where F = F(T, Q, T ) is a generic function of the torsion and nonmetricity scalars (T and
Q, respectively) and of the trace, T , of the energy-momentum tensor. In fact, (76) is an
extension of the action (34) of the MG-III model as it also includes a dependence on T in F.

By varying the action (76) with respect to the metric we obtain

− 1
2

gµνF + F′T
(

2SναβSµ
αβ − SαβµSαβ

ν + 2SναβSµ
βα − 4SµSν

)
+ F′QL(µν)

+ ∇̂λ

(
F′Q Jλ

(µν)

)
+ gµν∇̂λ

(
F′Qζλ

)
+ F′T

(
Θµν + Tµν

)
= κTµν ,

(77)

where ∇̂ is given in (23), Lµν, Jλ
µν and ζλ are defined in (24), while Θµν is given by (43).

The variation of (76) with respect to the general affine connection gives

2F′T
(

Sµν
λ − 2Sλ

[µν] − 4S[µδ
ν]
λ

)
+ F′Q

[
2Q[νµ]

λ −Qλ
µν + (qν −Qν)δ

µ
λ + Qλgµν +

1
2

Qµδν
λ

]
= 0 . (78)

Let us observe that (78) coincides with the connection field equations (36) of the MG-III
theory as, in the MG models, matter does not couple to the connection. We can now move
on to the metric-affine generalization of the MG-VII model.

Metric-Affine Generalizations of the MG-VII Model

On the same lines of what we have done in the previous sections, let us write the
MAMG-VII action as

S (VII)
MAMG =

1
2κ

∫ √
−gd4x[F(T, Q, T ,D) + 2κLm] , (79)

where D is given by (5). Again, T and D are placed on the same footing.
The metric field equations of the theory are

− 1
2

gµνF + F′T
(

2SναβSµ
αβ − SαβµSαβ

ν + 2SναβSµ
βα − 4SµSν

)
+ F′QL(µν)

+ ∇̂λ

(
F′Q Jλ

(µν)

)
+ gµν∇̂λ

(
F′Qζλ

)
+ F′T

(
Θµν + Tµν

)
+ F′DMµν = κTµν ,

(80)

where we recall that Mµν is defined in (9).
The connection field equations read as follows:

2F′T
(

Sµν
λ − 2Sλ

[µν] − 4S[µδ
ν]
λ

)
+ F′Q

[
2Q[νµ]

λ −Qλ
µν + (qν −Qν)δ

µ
λ + Qλgµν +

1
2

Qµδν
λ

]
−Mλ

µνρ∂ρF′D = F′T Θλ
µν + κ∆λ

µν ,
(81)

where Mλ
µνρ and Θλ

µν are respectively defined in Equations (11) and (48). We can also
consider a minimal metric-affine generalization of the MG-VII theory by excluding the D
dependence in the function F. In this minimal case, the metric field equations coincide
with (77), while the connection field equations are

2F′T
(

Sµν
λ − 2Sλ

[µν] − 4S[µδ
ν]
λ

)
+ F′Q

[
2Q[νµ]

λ −Qλ
µν + (qν −Qν)δ

µ
λ + Qλgµν +

1
2

Qµδν
λ

]
= F′T Θλ

µν + κ∆λ
µν .

(82)
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Analogously to what we have seen in the previous sections, the same result would follow
by considering some specific matter fulfilling ∆ν = 0. Observe that if Θλ

µν = 0 then the
connection field equations (81) reduce to (39), which are those of the MAMG-III theory.
Similarly, if Θλ

µν = 0 then (82) boil down to (82), namely to the connection field equations
of the minimal MAMG-III theory.

We conclude this section by mentioning that regarding MAMG-VII, besides the sub-
case we have already mentioned above, corresponding to the minimal MAMG-VII model
(minimal metric-affine generalization of MG-VII, which is the metric-affine F(T, Q, T )
theory), we also have the following sub-cases: the metric-affine F(T), F(Q) and F(T,D),
F(Q,D) theories, the metric-affine F(T, Q) model (minimal MAMG-III), the metric-affine
F(T, T ) and F(T, T ,D) theories (cf. (52) and (56), respectively), the metric-affine F(Q, T )
and F(Q, T ,D) models (see (72) and (74), respectively), and the metric-affine F(T, Q,D)
theory (i.e., MAMG-III). In each sub-case, by removing the dependence of the matter
Lagrangian on the general affine connection one is left with the respective sub-case of the
MG-VII theory.

9. MG-VIII and MAMG-VIII

In this section, we review the metric-affine generalization of the MG-VIII model,
introduced in [28]. Before moving on to the MAG generalization, let us introduce the
MG-VIII model, whose action is given by [27,36]

S (VIII)[g, Γ, ϕ] =
1

2κ

∫ √
−gd4x[F(R, T, Q, T ) + 2κLm] , (83)

extending the F(R), F(T), F(Q), F(R, T ) (cf. [33]), F(T, T ) (cf. [34]), and F(Q, T ) (cf. [35])
theories. (In particular, assuming flatness (namely Rλ

µνρ = 0) and vanishing nonmetric-
ity (83), boils down to the torsionful theories of [10,37], while demanding flatness and
vanishing torsion one is left with the models of [11,12]. On the other hand, imposing only
teleparallelism in (83) we are left with the generalized theories of [38,39].) The MG-VIII
model is the most general of the MG theories, the function F = F(R, T, Q, T ) in (83) being a
generic function of the scalar curvature R of the general affine connection Γλ

µν, the torsion
scalar T, the nonmetricity scalar Q, and the energy-momentum trace T .

The metric field equations of the theory read

− 1
2

gµνF + F′RR(µν) + F′T
(

2SναβSµ
αβ − SαβµSαβ

ν + 2SναβSµ
βα − 4SµSν

)
+ F′QL(µν)

+ ∇̂λ

(
F′Q Jλ

(µν)

)
+ gµν∇̂λ

(
F′Qζλ

)
+ F′T

(
Θµν + Tµν

)
= κTµν ,

(84)

where ∇̂ is defined in (23), while Lµν and the densities Jλ
µν and ζλ have been defined

in (24), and Θµν is given by (43).
On the other hand, the connection field equations are

Pλ
µν(F′R) + 2F′T

(
Sµν

λ − 2Sλ
[µν] − 4S[µδ

ν]
λ

)
+ F′Q

[
2Q[νµ]

λ −Qλ
µν + (qν −Qν)δ

µ
λ + Qλgµν +

1
2

Qµδν
λ

]
= 0 ,

(85)

where Pλ
µν(F′R) is the modified Palatini tensor defined in (4). Equation (85) coincides

with (60) obtained for the MG-V model, due to the fact that in the MG theories matter does
not couple to the connection.

Metric-Affine Generalizations of the MG-VIII Model

The MAMG-VIII action, generalizing to the metric-affine case (83), is [28]

S (VIII)
MAMG =

1
2κ

∫ √
−gd4x[F(R, T, Q, T ,D) + 2κLm] , (86)
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where the divergence of the dilation current D is given by (5) and in (86) it is placed on the
same footing of T .

The variation of the action (86) with respect to the metric yields

− 1
2

gµνF + F′RR(µν) + F′T
(

2SναβSµ
αβ − SαβµSαβ

ν + 2SναβSµ
βα − 4SµSν

)
+ F′QL(µν)

+ ∇̂λ

(
F′Q Jλ

(µν)

)
+ gµν∇̂λ

(
F′Qζλ

)
+ F′T

(
Θµν + Tµν

)
+ F′DMµν = κTµν ,

(87)

where in particular, Mµν is given by (9).
On the other hand, from the variation of the action (86) with respect to the general

affine connection Γλ
µν we find

Pλ
µν(F′R) + 2F′T

(
Sµν

λ − 2Sλ
[µν] − 4S[µδ

ν]
λ

)
+ F′Q

[
2Q[νµ]

λ −Qλ
µν + (qν −Qν)δ

µ
λ + Qλgµν +

1
2

Qµδν
λ

]
−Mλ

µνρ∂ρF′D = F′T Θλ
µν + κ∆λ

µν ,
(88)

where Mλ
µνρ and Θλ

µν have been defined in (11) and (48), respectively. On the same
lines of what we have seen for all the theories previously discussed, also here one might
consider a minimal metric-affine generalization of the MG-VIII model by excluding the
D dependence in the function F. The metric field equations in this minimal case coincide
with (84), while the connection field equations read

Pλ
µν(F′R) + 2F′T

(
Sµν

λ − 2Sλ
[µν] − 4S[µδ

ν]
λ

)
+ F′Q

[
2Q[νµ]

λ −Qλ
µν + (qν −Qν)δ

µ
λ + Qλgµν +

1
2

Qµδν
λ

]
= F′T Θλ

µν + κ∆λ
µν .

(89)

The same result would follow by considering some specific matter fulfilling ∆ν = 0. Finally,
observe that if Θλ

µν = 0 the connection field equations (88) reduce to (63), namely to those
of the MAMG-V theory. Analogously, if Θλ

µν = 0 Equation (89) boil down to (64), i.e., to
the connection field equations of the minimal MAMG-V model.

Let us conclude this section by mentioning that concerning the MAMG-VIII the-
ory, besides the sub-case we have already mentioned above, corresponding to mini-
mal MAMG-VIII (minimal metric-affine generalization of MG-VIII, which is the metric-
affine F(R, T, Q, T ) theory), we also have the following sub-cases: the metric-affine F(R),
F(T), F(Q), F(R,D), F(T,D), F(Q,D), F(R, T ), F(T, T ), F(Q, T ), F(R, T ,D), F(T, T ,D),
F(Q, T ,D) theories, the metric-affine F(R, T), F(R, Q), F(T, Q) models (namely the mini-
mal MAMG-I, minimal MAMG-II, minimal MAMG-III theories, respectively), the metric-
affine F(R, T,D), F(R, Q,D), F(T, Q,D) models (MAMG-I, MAMG-II, MAMG-III, respec-
tively), the metric-affine F(R, T, T ), F(R, T, Q), F(R, Q, T ), F(T, Q, T ) theories (namely
minimal MAMG-IV, minimal MAMG-V, minimal MAMG-VI, minimal MAMG-VII, respec-
tively), and the metric-affine F(R, T, T ,D), F(R, T, Q,D), F(R, Q, T ,D), and F(T, Q, T ,D)
models (i.e., respectively, MAMG-IV, MAMG-V, MAMG-VI, and MAMG-VII).

10. Cosmological Aspects of MAMG Theories

Before proceeding, let us highlight some cosmological features of various modified
gravity models previously reviewed, mentioning in particular the way in which they offer
solutions to diverse issues in the cosmological context.

First of all, it is well-known that any extra source term such as Einstein’s cosmological
constant could be added into the energy-momentum tensor and serve as a candidate for
dark energy. The most favored candidate to play such role is the cosmological constant Λ,
and the Lambda Cold Dark Matter (ΛCDM) model has an optimal fit with many observa-
tional data. However, there exist many dark energy models able to explain the accelerated
expansion of the universe such as, e.g., quintessence, K-essence, phantom, etc.; moreover,
another way to explain late-time acceleration consists of considering modified gravity. In-
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deed, modified gravity theories, such as teleparallel gravity, symmetric teleparallel gravity,
F(R) gravity and further generalizations previously discussed, turned out to be rather
prominent setups to study modern cosmology especially to explore the elusive nature of
dark energy and the reason behind late-time cosmic acceleration.

As we have already mentioned, cosmological implications of F(R, T) gravity were
discussed in [29,30]. In particular, in [29], considering a FLRW background, it was found
that the model can describe the accelerated expansion of the universe. In [30], even for the
case in which the action is linear in R and T, it was proved that the Friedmann equations
contain new terms of geometrical origin and, applying the theory at late-times, it was
found that in the model dark energy can be quintessence-like or phantom-like, or behave as
a cosmological constant, reproducing ΛCDM cosmology. On the other hand, considering
early-time the de Sitter solution was recovered, along with an inflationary scenario with
the desired scale factor evolution. Observational constraints on F(R, T) gravity have been
recently introduced in [31], using data from Supernovae (SNIa) Pantheon sample, Baryonic
Acoustic Oscillations (BAO), and Cosmic Chronometers measurements of the Hubble
parameter (CC), alongside arguments from Big Bang Nucleosynthesis (BBN), using a
specific connection and considering two specific cosmological models in the F(R, T) setup
(the aforementioned models differ in two scalars that quantify the effect of the specific
imposed connection). Both models lead to ∼ 1σ compatibility in all cases. Moreover,
reconstructing the Hubble function and the dark energy equation-of-state parameter as a
function of redshift, it was shown that the first model is very close to the ΛCDM scenario,
while for the second model at earlier times deviations are allowed. Even though the second
model does not contain ΛCDM cosmology as a limit, both models present a very efficient
fitting behavior and are at least statistically equivalent to ΛCDM cosmology.

For a review of cosmological aspects of F(T) teleparallel gravity, instead, we refer
the reader to, e.g., [15]. Moreover, in [40] diverse interacting dark energy cosmological
models in F(T) gravity were discussed, finding a good agreement with observational
data and obtaining, from the study of the behavior of the deceleration parameter, a phase
transition from a decelerated expanding universe to the present accelerated expanding
one. Furthermore, a complete cosmological scenario of FLRW universe in the context
of teleparallel gravity has been recently proposed in [41], where cosmology is much
simplified since teleparallel gravity is a second order theory. More precisely, the authors
have considered a F(T) theory with F(T) = T + β(−T)α, where α and β are parameters,
deriving the profiles of energy density, pressure, equation-of-state parameter, analyzing
deviation from the ΛCDM model (in particular, at late-time the findings are consistent with
standard cosmology), discussing the nature of dark energy, and studying energy conditions.
The strong energy condition is violated in support of the acceleration of the universe, in
accordance with current observations. F(T) gravity was also considered in the framework
of so-called fractal spacetime in [42], assuming that only time has a fractal profile, finding
consistency with cosmological observations.

As for F(T) gravity, also the F(Q) theory features in second order field equations.
The expansion history of the universe in F(Q) gravity has received lot of attention, and
the theory is successful in explaining the accelerated expansion of the universe at least to
the same level of statistic precision of most renowned modified gravities (cf., e.g., [43–51]).
Moreover, observational constraints on the theory have been put forward in [52,53], and
first demonstrates that F(Q) gravity can challenge the ΛCDM model, placing itself as a
good alternative candidate to describe the cosmological aspects of the universe, have been
disclosed in [54,55]. Moreover, spherically symmetric configurations in F(Q) gravity have
been recently studied in [56].

In recent years, many investigations have been carried out to describe the present
cosmic acceleration also in the setup of F(R, T ) gravity [57–63]. Moreover, several ho-
mogeneous isotropic and anisotropic cosmological models have been constructed in this
context [64–71]. In particular, in [68] a Λ(t) cosmological model capable of explaining
the recent astronomical observations of accelerating expansion of the universe with a
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decelerating phase of evolution in the past was obtained by a simple parametrization of
the Hubble parameter in a flat FLRW spacetime in F(R, T ) gravity. The field equations
were derived by taking the functional form of F(R, T ) = F(R) + F(T ) into consideration,
which leads to general relativistic field equations with a trace T dependent term that is
the cosmological constant Λ(T ) (see also [72]). Moreover, in [73] it was reconstructed a
cosmological model in F(R, T ) gravity able to discuss the expansion history of the model
in GR by dark matter as well as by holographic dark energy. The compatibility of F(R, T )
models with the accelerated expansion of the universe has also been proved and discussed
in [74]. Furthermore, in [75] it was considered non-minimally coupled F(R, T ) gravity
admitting minimal coupling with scalar field models in a generalized spacetime which
corresponds to different anisotropic and homogeneous universe models. For dust and
perfect fluids exact solutions have been derived and, in particular, it has been shown that
for a perfect fluid with dominating potential energy over kinetic energy the current cosmic
expansion is recovered for both phantom as well as quintessence models. Moreover, follow-
ing the idea that a varying cosmological constant may solve some of the standard ΛCDM
model problems such as the fine-tuning and cosmic coincidence, a stable flat universe with
variable cosmological constant in F(R, T ) gravity was studied in [76]. Subsequently, in [77]
a specific F(R, T) gravity reconstruction of the evolution for cyclic models in which the
Hubble parameter oscillates and keeps positive was considered, obtaining a singularity-
free cyclic universe with negative varying cosmological constant, which supports the role
suggested for a negative Λ in stopping the eternal acceleration. The cosmological solutions
were obtained for the case of a flat universe, and it was found that the cosmic pressure
grows without singular values, it is positive during the early-time decelerated expansion
and negative during the late-time accelerating epoch. For every single cycle, the universe
accelerates after an epoch of deceleration which agrees with observations.

Another fundamental question in modern cosmology is the so-called (initial) singular-
ity problem. In this context, one of the attractive possible alternatives to the well-celebrated
inflationary model to solve such problem resides in bouncing models of the universe,
according to which the latter may have emerged from a prior contracting phase capable
of expanding without singularity or experiencing a bouncing process. Bouncing models
in the F(R, T ) setup have been proposed and analyzed in, e.g., [78,79]. In particular, the
model of [79] is a non-singular bouncing cosmological model in F(R, T ) gravity within a
flat FLRW background metric with a specific parametrization of the Hubble parameter,
able to describe an expanding universe from the prior period of contraction with specific
constraints on the parameters. Quintessence-like and phantom-like scalar fields have also
been discussed in the same model for the specific parametrization of the Hubble parameter.

Cosmological issues regarding the future fate of the universe, i.e., whether the universe
expands forever or ends with a Big Rip, in the context of F(R, T ) gravity have been explored
in [80], where it was observed that considering a quadratic variation of the deceleration
parameter as a function of cosmic time which describes a smooth transition from the
decelerating phase of the universe to an accelerating one, the outcome is in favor of Big Rip.

In addition, locally rotationally symmetric Bianchi type-I viscous and non-viscous
cosmological models have been explored and compared in GR and F(R, T ) gravity in [81],
where it was shown that the metric potentials remain the same in both GR and F(R, T )
gravity, while in general, in F(R, T ) gravity the effect of bulk viscosity diminishes. On
the other hand, anisotropic Bianchi type-III perfect fluid cosmological models in F(R, T )
gravity were studied in [82]. These could be physically significant to discuss early stages of
the evolution of the universe. Moreover, a new holographic dark energy model with bulk
viscosity in F(R, T ) gravity has been recently proposed in [83] (the model considered there
approaches the ΛCDM one in the late-time evolution of the universe). Furthermore, in [84]
a bulk viscous cosmological model in F(R, T ) gravity was considered. A cosmological
solution was obtained for the special case F(R, T ) = R + 2λT , being λ a constant, and the
findings turned out to be compatible with recent observational data. The cosmic evolution
of non-minimally coupled F(R, T ) gravity in the presence of matter fluids consisting of
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collisional self-interacting dark matter and radiation was studied in [85], comparing the
results with those corresponding to non-collisional matter and to the ΛCDM model. In
particular, a flat FLRW universe was considered, focusing on the late-time dynamical evo-
lution of the model. The results are well accommodated to recent observational data based
on physical parameters. Always in the context of F(R, T ) gravity, a locally rotationally
symmetric Bianchi type-I magnetized strange quark matter (SQM) cosmological model
was studied in [86], where the exact solutions of the field equations were derived with
linearly time varying deceleration parameter, which is consistent with observational data
(from SNIa, BAO, and CMB) of standard cosmology. The model begins with Big Bang and
ends with a Big Rip. The transition of the deceleration parameter from a decelerating phase
to an accelerating one with respect to redshift obtained in the model of [86] fits with the
observational data of [87].

Regarding, instead, F(Q, T ) gravity, cosmological aspects were analyzed in a FLRW
background in [88]. In particular, in the quoted paper the non-linear model
F(Q, T ) = −αQ− βT 2, where α > 0 and β > 0 are constants, were considered, exploring
the evolution of the universe by examining the energy conditions and determining the
numerical solutions of the Hubble and deceleration parameters, the apparent magnitude,
and the luminosity distance (Supernova data have been used to obtain consistent results
of apparent magnitude and luminosity distance). The theoretical results on the Hubble
parameter, given in terms redshift, have been compared with those of the ΛCDM model.
For lower redshift the values are closer to those of the ΛCDM with respect to the case of
higher redshift values. Moreover, in [35] diverse F(Q, T ) models have been considered.
In all of them, the universe experiences an accelerating expansion, ending with a de Sitter
type evolution and representing a valid alternative to ΛCDM cosmology. The late-time de
Sitter phase is induced by the coupling between nonmetricity and matter. Cosmological
implications of Weyl-type F(Q, T ) gravity have been investigated in [89] by constraining
the model parameters using recent Hubble and Pantheon Supernovae data. In the same
paper, statefinder analysis was implemented to study various dark energy models to ad-
dress the current cosmic acceleration. It has been found that the solution which mimics
the power-law fits with the Pantheon data better than with the Hubble data. Moreover,
observational constraints in F(Q, T ) gravity have been put forward in [90], revealing that
the theory can be promising in addressing the current cosmic acceleration, possibly offering
another suitable alternative to the dark energy problem. Finally, in [91] non-singular matter
bounce has been explored in F(Q, T ) gravity models, validating the latter by means of
cosmographic tests and stability analysis.

On the other hand, more general cases remain poorly explored, in particular under the
cosmological point of view. In this direction, we now move on to the of study cosmological
aspects of all the MAMG theories previously introduced, which also represent generaliza-
tions of the prospective sub-cases we have just mentioned above. We focus on the case in
which the function characterizing MAMG is linear and consider a homogeneous FLRW
background in the presence of torsion and nonmetricity (see Appendix B for a collection of
useful formulas in this context). In particular, we derive the Friedmann equations for the
aforementioned theories in this cosmological framework.

Let us start by recalling the second Friedmann equation (i.e., the acceleration equation,
also known as Raychaudhuri equation) for general non-Riemannian cosmological setups,
which was obtained in [92] and reads as follows:

ä
a
= −1

3
Rµνuµuν + 2

(
ȧ
a

)
Φ + 2Φ̇ +

(
ȧ
a

)(
A +

C
2

)
+

Ȧ
2
− A2

2
− 1

2
AC− 2AΦ− 2CΦ , (90)

where a = a(t) is the scale factor of the universe, uµ is the normalized four-velocity, and
Φ = Φ(t) and A = A(t), C = C(t) are functions appearing, respectively, in the expressions
of torsion and nonmetricity given by (A30), obtained, in fact, in the highly symmetric
spacetime we are considering. We now derive (variants of) the first Friedmann equation
for the MAMG theories, focusing on the linear case. Before moving on to the analysis
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of the various models, let us observe that since
√−gD is a total divergence, at the linear

level the dilation current dependence in the function F characterizing the theories does
not contribute to the field equations. Thus, we will directly focus on the linear, minimal
MAMG models, namely on those excluding the D dependence in F, as at the linear level
the on-shell result would actually coincide with the one of the non-minimal cases.

Cosmology in linear MAMG-I

We consider the linear MAMG-I case in which

F = R + βT , (91)

where β is, in principle, a free parameter. (In fact, in this linear case one can write F = αR +
βT and fix the normalization of the theory choosing α = 1.) The metric field Equation (8)
(actually, (2), as we have safely excluded the D dependence in F) now take the form

− 1
2

gµνF + R(µν) + β
(

2SναβSµ
αβ − SαβµSαβ

ν + 2SναβSµ
βα − 4SµSν

)
= κTµν . (92)

Taking the trace of (92), let us mention here that one might also contract (92) with uµuν

and exploit the second Friedmann equation (90) in order to express everything in terms of
the scale factor and the torsion and nonmetricity parameters. Using the post-Riemannian
expansion of the scalar curvature R given in (A37) and the expressions of torsion and non-
metricity in (A30), we obtain the following variant of the modified first Friedmann equation:

ä
a
+

(
ȧ
a

)2
+ (1 + β)

(
4Φ2 − P2

)
+

1
8

[
2A2 + B(C− A)

]
+ Φ(2A− B) + ḟ1 + 3H f1 = −κ

6
T , (93)

where Φ = Φ(t), P = P(t) and A = A(t), B = B(t), C = C(t) are the functions appearing
in (A30), and we have also defined

f1 :=
1
2

(
B
2
− A− 4Φ

)
. (94)

In [28] it was provided a cosmological application of these results, considering the case in
which the matter Lagrangian is the one for a scalar field φ coupled to torsion, restricting the
theory to the torsionful case with vanishing nonmetricity. We will review this application
and further elaborate on it in Section 10.1.

On the other hand, in this linear case the connection field equations of the model read

Pλ
µν + 2β

(
Sµν

λ − 2Sλ
[µν] − 4S[µδ

ν]
λ

)
= κ∆λ

µν , (95)

where Pλ
µν is the Palatini tensor defined in Equation (A7). Let us also mention, here,

that in the cosmological setup we are considering, upon use of Equations (A30) (first line)
and (A35), Equation (95) takes the following form:(

1
2

A + 4Φ− C
2

)
uλhµν +

(
B− 3

2
A− 4Φ− C

2

)
uµhλ

ν − B
2

uνhµ
λ −

3
2

Buλuµuν − 2ε
µν

λ ρuρP

+ 2β
[
4
(

δ
[ν
λ hµ]

ρuρ + 3δ
[µ
λ uν] + hλ

[νuµ]
)

Φ− ε
µν

λ ρuρP
]
= κ∆λ

µν ,
(96)

where, in particular, the explicit expressions of ∆λ
µν depend on the specific matter one

might then consider (see, e.g., the explicit expression of the hypermomentum tensor in the
presence of a cosmological hyperfluid given in Ref. [93]).
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Cosmology in linear MAMG-II

We now consider the linear MAMG-II case in which

F = R + γQ , (97)

where γ is a free parameter. Equation (27) now takes the following form:

− 1
2

gµνF + R(µν) + γ
(

L(µν) + ∇̂λ Jλ
(µν) + gµν∇̂λζλ

)
= κTµν . (98)

Taking the trace of (98) and following the procedure described in the previous paragraph,
one ends up with

ä
a
+

(
ȧ
a

)2
+ 4Φ2 − P2 +

1
8

[
2A2 + B(C− A)

]
+ Φ(2A− B) + ḟ2 + 3H f2 = −κ

6
T , (99)

where

f2 :=
1
2

[
(1− γ)

(
B
2
− A

)
− 4Φ

]
. (100)

Equation (99) is a variant of the modified first Friedmann equation for the linear MAMG-
II theory.

Moreover, the connection field equations of the model now read

Pλ
µν + γ

[
2Q[νµ]

λ −Qλ
µν + (qν −Qν)δ

µ
λ + Qλgµν +

1
2

Qµδν
λ

]
= κ∆λ

µν . (101)

The latter, upon use of Equations (A30) (second line) and (A35), take the form(
1
2

A + 4Φ− C
2

)
uλhµν +

(
B− 3

2
A− 4Φ− C

2

)
uµhλ

ν − B
2

uνhµ
λ −

3
2

Buλuµuν − 2ε
µν

λ ρuρP

+ γ

[
B
2

δν
λhµ

ρuρ + Bhλρhµνuρ +

(
A− 1

2
B
)

δ
µ
λhν

ρuρ + (2A− C)hµνuλ +
1
2
(3A− C)δν

λuµ

− Ahλ
νuµ + 3

(
1
2

B− A
)

δ
µ
λuν + (A− B)hλ

µuν − Bhλρuρuµuν − 3Auλuµuν

]
= κ∆λ

µν

(102)

in the cosmological setup we are considering.

Cosmology in linear MAMG-III

Here we consider the linear MAMG-III case in which

F = T + γQ , (103)

where γ is a free parameter. (In fact, in the linear case at hand one may write F = βT + γQ
and fix the normalization of the theory choosing β = 1.) The metric field equations of the
theory now read

− 1
2

gµνF + 2SναβSµ
αβ − SαβµSαβ

ν + 2SναβSµ
βα − 4SµSν

+ γ
(

L(µν) + ∇̂λ Jλ
(µν) + gµν∇̂λζλ

)
= κTµν .

(104)

Taking the trace of the latter and using the expressions of torsion and nonmetricity in (A30)
we find

4Φ2 − P2 + ḟ3 + 3H f3 = −κ

6
T , (105)
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where we have defined

f3 := −γ

2

(
B
2
− A

)
. (106)

Notice that the scale factor a(t) appears in (105) only through the Hubble parameter
H := ȧ

a , due to the fact that the function F in (103) does not depend on the scalar curvature
R. Therefore, Equation (105) gives the expression of H in terms of the other parameters of
the linear MAMG-III theory and of T . In particular, this must be so since we are not in the
realm of a gauge theory of gravity. In the case of a gauge theory of gravity, in fact, in the
tetrads formalism one can fix the form of the affine connection from the very beginning in
terms of the dynamical vielbein and find the consequent effective Friedmann equations.

On the other hand, let us also mention that the connection field equations of the model
now become

2β
(

Sµν
λ − 2Sλ

[µν] − 4S[µδ
ν]
λ

)
+ γ

[
2Q[νµ]

λ −Qλ
µν + (qν −Qν)δ

µ
λ + Qλgµν +

1
2

Qµδν
λ

]
= κ∆λ

µν .
(107)

In the cosmological setup we are considering, Equation (107) takes the form

2β
[
4
(

δ
[ν
λ hµ]

ρuρ + 3δ
[µ
λ uν] + hλ

[νuµ]
)

Φ− ε
µν

λ ρuρP
]
+ γ

[
B
2

δν
λhµ

ρuρ + Bhλρhµνuρ

+

(
A− 1

2
B
)

δ
µ
λhν

ρuρ + (2A− C)hµνuλ +
1
2
(3A− C)δν

λuµ − Ahλ
νuµ + 3

(
1
2

B− A
)

δ
µ
λuν

+ (A− B)hλ
µuν − Bhλρuρuµuν − 3Auλuµuν

]
= κ∆λ

µν ,

(108)

upon use of Equations (A30) and (A35).

Cosmology in linear MAMG-IV

Let us now move on to the linear MAMG-IV case, in which

F = R + βT + µT , (109)

where β and µ are free parameters. The metric field equations of the theory take the
following form:

− 1
2

gµνF + R(µν) + β
(

2SναβSµ
αβ − SαβµSαβ

ν + 2SναβSµ
βα − 4SµSν

)
+ µ

(
Θµν + Tµν

)
= κTµν . (110)

Taking the trace of (110), using the post-Riemannian expansion of R, given by Equa-
tion (A37), along with (A30), we obtain a variant of the modified first Friedmann equation
of the linear MAMG-IV theory, i.e.,

ä
a
+

(
ȧ
a

)2
+ (1 + β)

(
4Φ2 − P2

)
+

1
8

[
2A2 + B(C− A)

]
+ Φ(2A− B) + ḟ1 + 3H f1

=
µ

6
(Θ− T )− κ

6
T ,

(111)

where f1 is defined in (94) and
Θ := Θµνgµν . (112)

The first term on the right-hand side of (111) is consequence of the (linear) T dependence
in (109), while all the other terms in (111) coincide with those appearing in Equation (93).
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Furthermore, in this linear case the connection field equations of the theory read as
follows:

Pλ
µν + 2β

(
Sµν

λ − 2Sλ
[µν] − 4S[µδ

ν]
λ

)
= µΘλ

µν + κ∆λ
µν . (113)

The latter, in the cosmological scenario we are considering, upon use of Equations (A30)
(first line) and (A35), become(

1
2

A + 4Φ− C
2

)
uλhµν +

(
B− 3

2
A− 4Φ− C

2

)
uµhλ

ν − B
2

uνhµ
λ −

3
2

Buλuµuν − 2ε
µν

λ ρuρP

+ 2β
[
4
(

δ
[ν
λ hµ]

ρuρ + 3δ
[µ
λ uν] + hλ

[νuµ]
)

Φ− ε
µν

λ ρuρP
]
= µΘλ

µν + κ∆λ
µν ,

(114)

where, in particular, the explicit expressions of Θλ
µν and ∆λ

µν depend on the specific
matter one might then consider.

Cosmology in linear MAMG-V

In this paragraph we consider the linear MAMG-V case in which

F = R + βT + γQ , (115)

where β and γ are free parameters. The metric field equations of the theory read as follows:

− 1
2

gµνF + R(µν) + β
(

2SναβSµ
αβ − SαβµSαβ

ν + 2SναβSµ
βα − 4SµSν

)
+ γ

(
L(µν) + ∇̂λ Jλ

(µν) + gµν∇̂λζλ
)
= κTµν .

(116)

Taking the trace of the latter and following what we have done in the previous paragraph,
we are left with a variant of the modified first Friedmann equation of the linear MAMG-V
theory, i.e.,

ä
a
+

(
ȧ
a

)2
+ (1 + β)

(
4Φ2 − P2

)
+

1
8

[
2A2 + B(C− A)

]
+ Φ(2A− B) + ḟ2 + 3H f2 = −κ

6
T , (117)

where f2 is defined in (100).
Moreover, in the linear case (115) the connection field equations of the theory become

Pλ
µν + 2β

(
Sµν

λ − 2Sλ
[µν] − 4S[µδ

ν]
λ

)
+ γ

[
2Q[νµ]

λ −Qλ
µν + (qν −Qν)δ

µ
λ + Qλgµν +

1
2

Qµδν
λ

]
= κ∆λ

µν .
(118)

The latter, in the cosmological setup we are considering, take the form(
1
2

A + 4Φ− C
2

)
uλhµν +

(
B− 3

2
A− 4Φ− C

2

)
uµhλ

ν − B
2

uνhµ
λ −

3
2

Buλuµuν − 2ε
µν

λ ρuρP

+ 2β
[
4
(

δ
[ν
λ hµ]

ρuρ + 3δ
[µ
λ uν] + hλ

[νuµ]
)

Φ− ε
µν

λ ρuρP
]
+ γ

[
B
2

δν
λhµ

ρuρ + Bhλρhµνuρ

+

(
A− 1

2
B
)

δ
µ
λhν

ρuρ + (2A− C)hµνuλ +
1
2
(3A− C)δν

λuµ − Ahλ
νuµ + 3

(
1
2

B− A
)

δ
µ
λuν

+ (A− B)hλ
µuν − Bhλρuρuµuν − 3Auλuµuν

]
= κ∆λ

µν

(119)

upon use of Equations (A30) and (A35).
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Cosmology in linear MAMG-VI

We now consider the linear MAMG-VI theory in which

F = R + γQ + µT , (120)

where γ and µ are free parameters. The metric field equations of the model at hand read

− 1
2

gµνF + R(µν) + γ
(

L(µν) + ∇̂λ Jλ
(µν) + gµν∇̂λζλ

)
+ µ

(
Θµν + Tµν

)
= κTµν . (121)

Taking the trace of (121) and using (A37) and (A30), we arrive at

ä
a
+

(
ȧ
a

)2
+ 4Φ2 − P2 +

1
8

[
2A2 + B(C− A)

]
+ Φ(2A− B) + ḟ2 + 3H f2 =

µ

6
(Θ− T )− κ

6
T , (122)

where f2 and Θ are defined, respectively, in (100) and (112). Equation (122) is a variant of
the modified first Friedmann equation of the linear MAMG-VI model.

Moreover, in the linear case at hand the connection field equations of the model read

Pλ
µν + γ

[
2Q[νµ]

λ −Qλ
µν + (qν −Qν)δ

µ
λ + Qλgµν +

1
2

Qµδν
λ

]
= µΘλ

µν + κ∆λ
µν , (123)

which, in the cosmological setup we are considering, take the form(
1
2

A + 4Φ− C
2

)
uλhµν +

(
B− 3

2
A− 4Φ− C

2

)
uµhλ

ν − B
2

uνhµ
λ −

3
2

Buλuµuν − 2ε
µν

λ ρuρP

+ γ

[
B
2

δν
λhµ

ρuρ + Bhλρhµνuρ +

(
A− 1

2
B
)

δ
µ
λhν

ρuρ + (2A− C)hµνuλ +
1
2
(3A− C)δν

λuµ

− Ahλ
νuµ + 3

(
1
2

B− A
)

δ
µ
λuν + (A− B)hλ

µuν − Bhλρuρuµuν − 3Auλuµuν

]
= µΘλ

µν + κ∆λ
µν ,

(124)

where we have used Equations (A30) (second line) and (A35).

Cosmology in linear MAMG-VII

Here we focus on the linear MAMG-VII case in which

F = T + γQ + µT , (125)

where γ and µ are free parameters. The metric field equations of the theory become

− 1
2

gµνF + 2SναβSµ
αβ − SαβµSαβ

ν + 2SναβSµ
βα − 4SµSν

+ γ
(

L(µν) + ∇̂λ Jλ
(µν) + gµν∇̂λζλ

)
+ µ

(
Θµν + Tµν

)
= κTµν .

(126)

Taking the trace of Equation (126) and using the expressions of torsion and nonmetricity
in (A30), we obtain

4Φ2 − P2 + ḟ3 + 3H f3 =
µ

6
(Θ− T )− κ

6
T , (127)

where f3 is given by (106), while Θ is defined in (112). Observe that in this case, analogously
to what happens in the linear MAMG-III theory, the scale factor a(t) appears in (127) only
through the Hubble parameter H, which is due to the fact that the function F in (125) does
not depend on the scalar curvature R of the general affine connection Γ. One could then
apply arguments analogous to those made in the case of the MAMG-III cosmology.
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Moreover, in the linear case given by Equation (125), the connection field equations of
the theory take the following form:

2β
(

Sµν
λ − 2Sλ

[µν] − 4S[µδ
ν]
λ

)
+ γ

[
2Q[νµ]

λ −Qλ
µν + (qν −Qν)δ

µ
λ + Qλgµν +

1
2

Qµδν
λ

]
= µΘλ

µν + κ∆λ
µν ,

(128)

which exploiting once again Equations (A30) and (A35), become

+ 2β
[
4
(

δ
[ν
λ hµ]

ρuρ + 3δ
[µ
λ uν] + hλ

[νuµ]
)

Φ− ε
µν

λ ρuρP
]
+ γ

[
B
2

δν
λhµ

ρuρ + Bhλρhµνuρ

+

(
A− 1

2
B
)

δ
µ
λhν

ρuρ + (2A− C)hµνuλ +
1
2
(3A− C)δν

λuµ − Ahλ
νuµ + 3

(
1
2

B− A
)

δ
µ
λuν

+ (A− B)hλ
µuν − Bhλρuρuµuν − 3Auλuµuν

]
= µΘλ

µν + κ∆λ
µν

(129)

in the cosmological scenario we are considering.

Cosmology in linear MAMG-VIII

Finally, let us report in the following the cosmological aspects of the linear MAMG-VIII
theory. In this case, we have

F = R + βT + γQ + µT , (130)

β, γ, and µ being free parameters, and the metric field equations of the theory take the form

− 1
2

gµνF + R(µν) + β
(

2SναβSµ
αβ − SαβµSαβ

ν + 2SναβSµ
βα − 4SµSν

)
+ γ

(
L(µν) + ∇̂λ Jλ

(µν) + gµν∇̂λζλ
)
+ µ

(
Θµν + Tµν

)
= κTµν .

(131)

Taking the trace of (131) and using (A37) and (A30), we arrive at

ä
a
+

(
ȧ
a

)2
+ (1 + β)

(
4Φ2 − P2

)
+

1
8

[
2A2 + B(C− A)

]
+ Φ(2A− B) + ḟ2 + 3H f2

=
µ

6
(Θ− T )− κ

6
T ,

(132)

where f2 and Θ are defined in (100) and (112), respectively. Equation (132) is a variant of
the modified first Friedmann equation which together with the acceleration Equation (90),
rules the cosmology of the linear MAMG-VIII model.

Moreover, in this linear case the connection field equations of the theory read

Pλ
µν + 2β

(
Sµν

λ − 2Sλ
[µν] − 4S[µδ

ν]
λ

)
+ γ

[
2Q[νµ]

λ −Qλ
µν + (qν −Qν)δ

µ
λ + Qλgµν +

1
2

Qµδν
λ

]
= µΘλ

µν + κ∆λ
µν .

(133)

The latter, in the cosmological setup we are considering, take the form
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(
1
2

A + 4Φ− C
2

)
uλhµν +

(
B− 3

2
A− 4Φ− C

2

)
uµhλ

ν − B
2

uνhµ
λ −

3
2

Buλuµuν − 2ε
µν

λ ρuρP

+ 2β
[
4
(

δ
[ν
λ hµ]

ρuρ + 3δ
[µ
λ uν] + hλ

[νuµ]
)

Φ− ε
µν

λ ρuρP
]
+ γ

[
B
2

δν
λhµ

ρuρ + Bhλρhµνuρ

+

(
A− 1

2
B
)

δ
µ
λhν

ρuρ + (2A− C)hµνuλ +
1
2
(3A− C)δν

λuµ − Ahλ
νuµ + 3

(
1
2

B− A
)

δ
µ
λuν

+ (A− B)hλ
µuν − Bhλρuρuµuν − 3Auλuµuν

]
= µΘλ

µν + κ∆λ
µν ,

(134)

where, as in the other models previously studied, we have used Equations (A30) and (A35).

10.1. On the Case of a Scalar Field Coupled to Torsion

We shall now review and rediscuss the cosmological application in [28] to the case in
which the matter Lagrangian is given by the one for a scalar field φ coupled to torsion (in
particular, by means of the torsion vector Sµ), where the nonmetricity has been set to zero.
The matter Lagrangian reads

Lm = −1
2

gµν∇µφ∇νφ−V(φ) + λ0Sµ∇µφ , (135)

where λ0 is a constant parameter and we recall that ∇µφ = ∂µφ. In particular, the authors
of [28] considered the linear MAMG-I case (91). Hence, the full action of the theory is

S =
1

2κ

∫ √
−gd4x

[
R + βT + 2κ

(
−1

2
gµν∇µφ∇νφ−V(φ) + λ0Sµ∇µφ

)]
. (136)

The variation of (136) with respect to the scalar field φ yields

1√−g
∂µ

[√
−g(∂µφ− λ0Sµ)

]
=

∂V
∂φ

. (137)

Moreover, the hypermomentum in this case reads (It can be computed using Equation (A18)
(more precisely, the variation of the torsion vector with respect to the general
affine connection)).

∆λ
µν = 2λ0δ

[µ
λ ∇

ν]φ . (138)

Varying the action (136) with respect to the general affine connection Γλ
µν one finds

Pλ
µν + 2β

(
Sµν

λ − 2Sλ
[µν] − 4S[µδ

ν]
λ

)
= 2κλ0δ

[µ
λ ∇

ν]φ , (139)

where Pλ
µν is the Palatini tensor defined in Equation (A7). In particular, taking different

contractions of (139), we obtain

Sλ = 0 ,

Sµ =
3κλ0

8β
∂µφ ,

(1 + β)tλ = 0 ,

(140)

where tλ is the torsion pseudo-vector (cf. Appendix A). The equations in (140) indicate that
the torsion vector vanishes and, therefore, to have non-trivial dynamics for the scalar field,
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one should set λ0 = 0, namely remove the coupling to torsion in (135). Moreover, the last
of (140) implies that either β = −1 or tλ = 0. Fixing

λ0 = 0 , β = −1 , (141)

and plugging (140) back into (139), the latter boils down to

Zλ
µν = 0 , (142)

namely the traceless part of the torsion vanishes, while the only remaining torsion com-
ponents are the four of the non-vanishing torsion pseudo-vector tλ. In particular, one can
prove that the choice (141) is the only one we can perform at this point in such a way to
have non-trivial dynamics for φ in the presence of a non-vanishing (totally antisymmetric)
torsion. Moreover, Equation (137) reduces to

1√−g
∂µ

[√
−g∂µφ

]
=

∂V
∂φ

, (143)

which, in the simple case of a free scalar (i.e., V(φ) = 0), becomes

1√−g
∂µ

[√
−g∂µφ

]
= 0 . (144)

Following the same lines of [28], let us restrict ourselves to this case from now on.
Regarding the torsion, we are left with

Sλµ
ν =

1
6

ελµκρgκνtρ . (145)

Up to this point, the above considerations were general for the model at hand. Let us now
focus on the homogeneous FLRW cosmology of this theory (for the cosmological setup we
will consider in the following we refer the reader to Appendix B). From the first equation
of (A30) we see that, in this case, Φ(t) = 0. Hence, we find that the full torsion tensor is
given by

Sµνα = εµναρuρP(t) (146)

in a homogeneous, non-Riemannian (metric but torsionful) FLRW cosmological setup.
Moreover, plugging back the above results into the action (136), the latter becomes

S =
1

2κ

∫ √
−gd4x

[
R− T − κgµν∇µφ∇νφ

]
. (147)

Now, Equation (144) implies

φ̇ =
c0

a3 , (148)

where c0 is an arbitrary constant and a = a(t) is the scale factor of the universe.
On the other hand, the metric field equations of the theory (147) read

− 1
2

gµν(R− T) + R(µν) −
(

2SναβSµ
αβ − SαβµSαβ

ν + 2SναβSµ
βα
)
= κTµν . (149)

Here, let us introduce the following form of the energy-momentum tensor:

Tµν = ρuµuν + phµν , (150)

where ρ and p are, respectively, the density and the pressure associated with the scalar
field Lagrangian, while uµ is the normalized four-velocity and hµν is the projection tensor
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projecting objects on the space orthogonal to uµ (cf. the definition in Equation (A25)).
Therefore, we have

T = −ρ + 3p = φ̇2 . (151)

Taking the trace of (149) and using (146) and (A37), we obtain

ä
a
+

(
ȧ
a

)2
= −κ

6
φ̇2 . (152)

Let us now derive the acceleration equation for the case at hand. Contracting the field
equations (149) with uµuν, using the useful formulas collected in Appendix B, we obtain

Rµνuµuν =
κ

2
(ρ + 3p) . (153)

The latter, when substituted in Equation (90) in the case of vanishing nonmetricity and
Φ = 0, yields

ä
a
= −κ

6
(ρ + 3p) , (154)

which is the acceleration equation of the theory. It can be rewritten as

ä
a
= −κ

3
φ̇2 . (155)

Notice that the non-Riemannian degrees of freedom of the torsion pseudo-vector do not
affect the cosmological evolution in this case, as all the contributions in P(t) cancel out in
the above equations. Finally, observe that using (155) to eliminate the double temporal
derivative of the scale factor in (152), the latter becomes(

ȧ
a

)2
=

κ

6
φ̇2 , (156)

which is the first Friedmann equation of the model. Therefore, one is left with the usual
scalar field cosmology, namely the one that would have been obtained by considering the
purely Riemannian case. The situation would obviously be different in the presence of
non-vanishing scalar potential and nonmetricity. In the present case, the torsion pseudo-
vector, which here is the only non-vanishing part of the torsion tensor, do not affect the
cosmological equations of the theory, and we end up with a well-known result. This is
essentially a consequence of the fact that we must fix the coupling constant λ0 = 0 and the
parameter β = −1 in order for the scalar field to have non-trivial dynamics and for the
torsion to be non-vanishing, respectively.

The final form of the (metric but torsionful) affine connection for this model reads
as follows:

Γλ
µν = Γ̃λ

µν +
1
6

ελ
µνρtρ , (157)

where Γ̃λ
µν is the Levi-Civita connection, defined in (A4). Please note that using (146), the

final form of the connection given in (157) can be rewritten as

Γλ
µν = Γ̃λ

µν + ελ
µνρuρW(t) , (158)

with
W(t) = P(t) . (159)

Let us conclude this section by observing that in the sub-case in which F = R + βT → F = R
one would obtain a completely vanishing torsion tensor and the scalar field cosmology
would be the same retrieved above. On the other hand, in the sub-case F = R + βT → F = T,
where the dependence on the scalar curvature R in F is removed and β = 1 fixes the nor-
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malization of the theory, one is left with an imaginary coupling constant λ0 = ±2i
√

2
3κ .

For the sake of completeness, we report this particular sub-case in Appendix C.

11. Conclusions

This review, where we have collected the MG-N models and their MAMG gener-
alizations, also including their cosmological analysis, will be instrumental to the reader
interested in these topics and also to further investigate mathematical, physical, and cos-
mological aspects and applications of the aforementioned theories, in view of further
comparison with observations.

We have discussed the MAMG-N theories, offering a complete dictionary on the sub-
ject, and derived the modified Friedmann equations for the linear case in a homogeneous,
non-Riemannian FLRW spacetime. In this context, let us stress that it would be interesting
to release the assumptions of linearity of F, in particular to examine the cosmological
consequences induced by the very presence of the divergence of the dilation current in F.
Such a study might also shed some light on the phenomenological aspects of this peculiar
contribution and on the energy-momentum trace counterpart as well.

Moreover, we have given a cosmological application of the results obtained so far to
the case in which the matter action is given in terms of the Lagrangian for a scalar field
directly coupled to torsion by means of the torsion vector Sµ, with coupling constant λ0. In
particular, focusing on the linear metric-affine F = R + βT theory (i.e., the linear MAMG-I
model), we have shown that we actually have to set λ0 = 0 (and β = −1) in order to end up
with a non-trivial theory. This implies that in this case, the torsion does not contribute to the
cosmological evolution of the model and one ends up with the usual scalar field cosmology.
Nevertheless, the torsion is non-vanishing in this case: it is completely antisymmetric
(given in terms of the torsion pseudo-vector) and determines the final form of the affine
connection.

As already stressed in [28], one could extend our analysis by considering also non-
vanishing nonmetricity and hence direct coupling of the scalar field to both torsion and
nonmetricity. In this context, one might take the following matter Lagrangian:

Lm = −1
2

gµν∇µφ∇νφ−V(φ) + λ0Sµ∇µφ + λ1Qµ∇µφ + λ2qµ∇µφ , (160)

with constant parameters λ0, λ1, λ2 and where Qµ and qµ are the nonmetricity vectors. In
particular, the hypermomentum associated with (160) is (It can be derived by exploiting
Equation (A18)).

∆λ
µν = 2

[
λ0δ

[µ
λ ∇

ν]φ− 2λ1δ
µ
λ∇

νφ− λ2(gµν∇λφ + δν
λ∇µφ)

]
. (161)

In this case, we expect the nonmetricity vectors, and possibly the torsion trace, to play a non-
trivial role in cosmological solutions. We leave the complete study to a forthcoming paper.

It would be worth it to further elaborate on cosmological applications of MAMG
theories, especially in the presence of a cosmological hyperfluid [93,94] (see also [95]).
Possible future developments may also regard the inclusion of parity violating terms in
MAMG, in particular of the so-called Hojman term [96] (most of the time referred to as
the Holst term [97]), following the lines of [98]. Always in this context, one might also
consider the inclusion of a parity violating coupling of a scalar field to torsion, adding
the contribution λ3tµ∇µφ to the matter Lagrangian (160), where λ3 is another constant
parameter of the theory. In this case, the hypermomentum tensor would be

∆λ
µν = 2

[
λ0δ

[µ
λ ∇

ν]φ− 2λ1δ
µ
λ∇

νφ− λ2(gµν∇λφ + δν
λ∇µφ)− λ3ερµν

λ∇ρφ
]

. (162)

Given this enlarged setup, we argue that here also the torsion pseudo-vector could play a
non-trivial role in the study of cosmological solutions.
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Appendix A. Notation, Conventions and Useful Formulas in MAG

We consider four spacetime dimensions and our convention for the metric signature
is mostly plus: (−,+,+,+). We use minuscule Greek letters to denote spacetime indices,
i.e., µ, ν, . . . = 0, 1, 2, 3.

The covariant derivative ∇ of, e.g., a vector vλ is defined as

∇νvλ = ∂νvλ + Γλ
µνvµ , (A1)

where we have also introduced the general affine connection Γλ
µν. The latter can be

decomposed as follows:
Γλ

µν = Γ̃λ
µν + Nλ

µν , (A2)

where
Nλ

µν =
1
2

gρλ
(
Qµνρ + Qνρµ −Qρµν

)
︸ ︷︷ ︸

deflection (or disformation)

− gρλ
(
Sρµν + Sρνµ − Sµνρ

)︸ ︷︷ ︸
contorsion :=Kλ

µν

(A3)

is the distortion tensor and

Γ̃λ
µν =

1
2

gρλ
(
∂µgνρ + ∂νgρµ − ∂ρgµν

)
(A4)

is the Levi-Civita connection. The torsion and nonmetricity tensors in (A3) are defined as

Sµν
ρ := Γρ

[µν] ,

Qλµν := −∇λgµν = −∂λgµν + Γρ
µλgρν + Γρ

νλgµρ ,
(A5)

respectively. Their trace decomposition in four spacetime dimensions reads

Sλµ
ν =

2
3

δ[µ
νSλ] +

1
6

ελµκρgκνtρ + Zλµ
ν ,

Qλµν =
5

18
Qλgµν −

1
9

qλgµν +
4
9

gλ(νqµ) −
1
9

gλ(νQµ) + Ωλµν ,
(A6)

where Qλ := Qλµ
µ and qν := Qµ

µν are the nonmetricity vectors, Sλ := Sλσ
σ is the

torsion vector, and tρ := ερλµνSλµν is the torsion pseudo-vector. On the other hand, Zλµ
ν

(with Zλµν = 4
3 Z[λ(µ]ν), ελµνρZλµν = 0) and Ωλµν are the traceless parts of torsion and

nonmetricity, respectively. We denote by εµναβ = 1√−g εµναβ the Levi-Civita tensor, while

εµναβ is the Levi-Civita symbol.
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Exploiting the trace decomposition (A6), one can prove that the so-called Palatini tensor,
whose definition reads

Pλ
µν := −∇λ(

√−ggµν)√−g
+
∇σ(
√−ggµσ)δν

λ√−g
+ 2(Sλgµν − Sµδν

λ + gµσSσλ
ν) , (A7)

can be written in terms of torsion and nonmetricity as [22]

Pλ
µν = δν

λ

(
qµ − 1

2
Qµ − 2Sµ

)
+ gµν

(
1
2

Qλ + 2Sλ

)
− (Qλ

µν + 2Sλ
µν)

= −Ωλ
µν +

1
3

gµν

(
2
3

Qλ +
1
3

qλ + 4Sλ

)
+

1
9

δν
λ(−4Qµ + 7qµ) +

1
9

δ
µ
λ

(
1
2

Qµ − 2qν

)
− 1

3
ελ

µνρtρ − 2Zλ
µν .

(A8)

Please note that the Palatini tensor is traceless in the indices µ, λ, i.e.,

Pµ
µν = 0 . (A9)

Our definition of the Riemann tensor for the general affine connection Γλ
µν is

Rµ
ναβ := 2∂[αΓµ

|ν|β] + 2Γµ
ρ[αΓρ

|ν|β] . (A10)

Correspondingly, Rµν := Rρ
µρν and R := gµνRµν are, respectively, the Ricci tensor and the

scalar curvature of Γ. In four spacetime dimensions the Riemann tensor in (A10) can be
decomposed into its Riemannian and non-Riemannian parts as follows:

Rλµνκ =
1
2
(

gλνR̃µκ − gλκ R̃µν − gµνR̃λκ + gµκ R̃λν

)
− 1

6
R̃
(

gλνgµκ − gλκ gµν

)
+ Cλµνκ

+ ∇̃κ Nλµν − ∇̃νNλµκ + NλανNα
µκ − Nλακ Nα

µν ,
(A11)

where R̃µν and R̃ := gµνR̃µν are, respectively, the Ricci tensor and Ricci scalar of the Levi-
Civita connection Γ̃λ

µν, ∇̃ denotes the covariant derivative of Γ̃λ
µν, and Cλ

µνκ is the Weyl
tensor, fulfilling

Cλ
µλκ = 0 , C(λµ)νρ = 0 , Cλµ(νρ) = 0 , Cλµνρ = Cνρλµ , C[λµνρ] = 0 , gρνCρλµν = 0 . (A12)

Furthermore, any tensor contraction between indices of the Weyl tensor vanishes.
We can also introduce the decomposition of the scalar curvature R in terms of the

Riemannian scalar curvature R̃ plus the non-Riemannian contributions given by torsion
and nonmetricity scalars, i.e.,

R = R̃ + T + Q + 2QαµνSαµν + 2Sµ(qµ −Qµ) + ∇̃(qµ −Qµ − 4Sµ) , (A13)

where we have defined the torsion and nonmetricity scalars as

T := SµναSµνα − 2SµναSαµν − 4SµSµ ,

Q :=
1
4

QαµνQαµν − 1
2

QαµνQµνα − 1
4

QµQµ +
1
2

Qµqµ ,
(A14)

respectively. Moreover, notice that defining the “superpotentials”

Ξαµν :=
1
4

Qαµν − 1
2

Qµνα − 1
4

gµνQα +
1
2

gαµQν ,

Σαµν := Sαµν − 2Sµνα − 4gµνSα
(A15)
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the torsion and nonmetricity scalars in (A14) can be rewritten in the following, more
compact, form:

T = SαµνΣαµν ,

Q = QαµνΞαµν .
(A16)

Let us also report the useful formulas concerning the variation of the nonmetricity and
torsion tensors with respect to the metric and the general affine connection Γλ

µν, i.e., [22]

δgQραβ = ∂ρ

(
gµαgνβδgµν

)
− 2gλµgν(αΓλ

β)ρδgµν ,

δgSµν
α = 0 ,

δΓQραβ = 2δν
ρδ

µ

(α
gβ)λδΓλ

µν ,

δΓSαβ
λ = δ

[µ
α δ

ν]
β δΓλ

µν .

(A17)

In particular, it follows that

δgQρ = ∂ρ

(
gµνδgµν

)
,

δgqβ = δgµν
[

gνβgρα
(
∂ρgµα

)
+ Γλ

µνgλβ − gρσΓα
ρσgµαgνβ

]
+ gνβ

(
∂µδgµν

)
,

δgSµ = 0 ,

δΓQρ = 2δν
ρδ

µ
λδΓλ

µν ,

δΓqβ =
(

gµνgβλ + δ
µ
β δν

λ

)
δΓλ

µν ,

δΓSα = δ
[µ
α δ

ν]
λ δΓλ

µν ,

δΓtα = εαµν
λδΓλ

µν .

(A18)

Finally, regarding the matter content in MAG theories, moreover the usual energy-momentum
tensor, which is defined as

Tµν := − 2√−g
δ(
√−gLm)

δgµν , (A19)

we also have a non-trivial dependence of the matter Lagrangian on the general affine
connection. In fact, the variation of the matter part of the action with respect to Γλ

µν defines
the hypermomentum tensor,

∆λ
µν := − 2√−g

δ(
√−gLm)

δΓλ
µν

. (A20)

The energy-momentum and hypermomentum tensors are not independent. In particular,
they are subject to the conservation law√
−g
(

2∇̃µTµ
α − ∆λµνRλµνα

)
+ ∇̌µ∇̌ν

(√
−g∆α

µν
)
+ 2Sµα

λ∇̌ν

(√
−g∆λ

µν
)
= 0 , (A21)

where we have introduced

∇̌µ := 2Sµ −∇µ =
√
−g∇̂ , (A22)

the derivative ∇̂ being defined in (23). Equation (A21) originates from the invariance under
diffeomorphisms of the matter sector of the action (cf. [93]).
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Appendix B. Cosmology in the Presence of Torsion and Nonmetricity

In this appendix we recall, following [93], the expressions of the general affine connec-
tion Γλ

µν, the torsion and nonmetricity tensors, the Palatini tensor, and the scalar curvature
R in a homogeneous, non-Riemannian FLRW spacetime.

We consider a homogeneous, flat FLRW cosmology, where the line element is

ds2 = −dt2 + a2(t)δijdxidxj , (A23)

with i, j, . . . = 1, 2, 3 and scale factor a(t). The Hubble parameter is

H :=
ȧ
a

(A24)

and the projection tensor projecting objects on the space orthogonal to the normalized
four-velocity uµ (such that uµ = δ

µ
0 = (1, 0, 0, 0) and uµuµ = −1) is

hµν := gµν + uµuν = hνµ . (A25)

In particular, we have

hµνhµν = 3 , hµαhνα = δν
µ + uµuν , hµ

µ = 3 , hµνuµuν = 0 . (A26)

We also define the temporal derivative

˙= uα∇α . (A27)

The projection operator (A25) and the temporal derivative (A27) constitute together a 1 + 3
spacetime split.

In a non-Riemannian FLRW spacetime in 1 + 3 dimensions the general affine connec-
tion can be written as

Γλ
µν = Γ̃λ

µν + X(t)uλhµν +Y(t)uµhλ
ν + Z(t)uνhλ

µ +V(t)uλuµuν + ελ
µνρuρW(t) , (A28)

where, in particular, the non-vanishing components of the Levi-Civita connection read

Γ̃0
ij = Γ̃0

ji = ȧaδij = Hgij , Γ̃i
j0 = Γ̃i

0j =
ȧ
a

δi
j = Hδi

j . (A29)

The torsion and nonmetricity tensors can be written, respectively, in the following way:

Sµνα = 2u[µhν]αΦ(t) + εµναρuρP(t) ,

Qαµν = A(t)uαhµν + B(t)hα(µuν) + C(t)uαuµuν .
(A30)

The functions X(t), Y(t), Z(t), V(t), W(t) in (A28) and Φ(t), P(t), A(t), B(t), C(t) in (A30)
describe non-Riemannian cosmological effects and give, together with the scale factor,
the cosmic evolution of non-Riemannian geometries. Moreover, recalling (A2) and plug-
ging (A28) and (A30) into (A3), one can prove that the following linear relations hold
among the functions introduced above:

2(X + Y) = B , 2Z = A , 2V = C , 2Φ = Y− Z , P = W , (A31)

which may also be inverted, obtaining

W = P , V =
C
2

, Z =
A
2

, Y = 2Φ +
A
2

, X =
B
2
− 2Φ− A

2
. (A32)
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Therefore, one can prove that the torsion and nonmetricity scalars defined in (A14) become,
respectively,

T = 24Φ2 − 6P2 ,

Q =
3
4

[
2A2 + B(C− A)

]
.

(A33)

Moreover, let us also mention that using (A30) into the explicit expression of the Palatini
tensor in terms of torsion and nonmetricity, i.e., (A8), we obtain the cosmological expression
of the Palatini tensor, which reads

Pαµν =

(
1
2

A + 4Φ− C
2

)
uαhµν +

(
B− 3

2
A− 4Φ− C

2

)
uµhαν −

B
2

uνhµα −
3
2

Buαuµuν

− 2εαµνρuρP ,
(A34)

or, in the form we use in the main text of this paper,

Pλ
µν =

(
1
2

A + 4Φ− C
2

)
uλhµν +

(
B− 3

2
A− 4Φ− C

2

)
uµhλ

ν − B
2

uνhµ
λ −

3
2

Buλuµuν

− 2ε
µν

λ ρuρP .
(A35)

Consequently, one can prove that the following relations hold:

hαµPαµν = −3
2

Buν ,

hανPαµν = 3
(

B− 3
2

A− 4Φ− C
2

)
uµ ,

hµνPαµν = 3
(

1
2

A + 4Φ− C
2

)
uα ,

εαµνλPαµν = 12Puλ ,

uαuµuνPαµν =
3
2

B .

(A36)

Finally, using (A33), we find that the scalar curvature R, once decomposed in its Rieman-
nian and non-Riemannian parts (see Equation (A13)), acquires the following form:

R = R̃ + 6
[

1
4

A2 + 4Φ2 + Φ(2A− B)
]
+

3
4

B(C− A)− 6P2 +
3√−g

∂µ

[√
−guµ

(
B
2
− A− 4Φ

)]
, (A37)

where

R̃ = 6

[
ä
a
+

(
ȧ
a

)2
]

(A38)

is the Ricci scalar of the Levi-Civita connection Γ̃λ
µν.

Appendix C. Cosmological Aspects of the Metric-Affine F(T) Theory with a Scalar
Field Coupled to Torsion

In this appendix we take the model of Section 10.1 and restrict ourselves to the sub-
case F = R + βT → F = T in the presence of a (free) scalar field coupled to torsion, namely
we consider the action

S =
1

2κ

∫ √
−gd4x

[
T + 2κ

(
−1

2
gµν∇µφ∇νφ + λ0Sµ∇µφ

)]
. (A39)
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The variation of (A39) with respect to the scalar field φ yields

1√−g
∂µ

[√
−g(∂µφ− λ0Sµ)

]
= 0 . (A40)

The hypermomentum tensor is given by (138) and, varying the action (A39) with respect to
the general affine connection Γλ

µν, we obtain

2
(

Sµν
λ − 2Sλ

[µν] − 4S[µδ
ν]
λ

)
= 2κλ0δ

[µ
λ ∇

ν]φ . (A41)

Taking the different contractions of (A41), one can prove that the latter is solved by

Sµ =
3κλ0

8
∂µφ ,

tλ = 0 , Zλ
µν = 0 .

(A42)

Hence, only the torsion vector survives, and it is a pure gauge, while the torsion pseudo-
vector and the traceless part of the torsion vanish. In particular, the first of (A42) indicates
that it is the presence of the scalar field that produces spacetime torsion in this model. This
is so because we have a non-vanishing hypermomentum.

Plugging this result back into the action (A39), we end up with

S =
1

2κ

∫ √
−gd4x

[
T − κ

(
1−

3κλ2
0

4

)
gµν∇µφ∇νφ

]
. (A43)

Interestingly, from Equation (A43) we can conclude that the interaction between the scalar
and torsion modifies the factor of the kinetic term for the scalar field. Observe also that
there is a peculiar value of the coupling constant, namely |λ0| = 2

√
1

2κ , for which the
kinetic term of the scalar disappears from (A43). Of course, we shall disregard this trivial
case in the following.

Up to this point, the above considerations were general for the model at hand. We
shall now focus on the homogeneous FLRW cosmology of this theory (c.f. Appendix B for
the setup, definitions and useful formulas). Comparing the first equation of (A42) with the
first of (A30), we immediately see that in this case, P(t) = 0. Hence, we find that the full
torsion tensor is given by

Sµνα = 2u[µhν]αΦ , (A44)

with
Φ = Φ(t) = −κλ0

8
φ̇ . (A45)

Moreover, inserting the first of (A42) into Equation (A40), we obtain(
1−

3κλ2
0

4

)
∂µ

[√
−g∂µφ

]
= 0 , (A46)

which for |λ0| 6= 2
√

1
2κ , implies (148).

On the other hand, the metric field equations of the theory (147) read

− 1
2

gµνT +
(

2SναβSµ
αβ − SαβµSαβ

ν + 2SναβSµ
βα
)
= κTµν . (A47)
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Introducing the usual form of the energy-momentum tensor, i.e., (150), associated with
the scalar field Lagrangian, taking the trace of (A47), and using Equation (A44), we obtain
(recall that we are not dealing with a gauge theory of gravity)[(

κλ0

4

)2
+

κ

6

]
φ̇2 = 0 , (A48)

which discarding the (trivial) case φ̇2 = 0, is solved by

λ0 = ±2i

√
2

3κ
. (A49)

Let us also observe that, contracting Equation (A47) with uµuν, we find the same
Equation (A48). Thus, in the current model one is left with an imaginary coupling con-
stant λ0.

The final form of the (metric but torsionful) affine connection for the model at hand
reads as follows:

Γλ
µν = Γ̃λ

µν −
2
3

gµνSλ +
2
3

δλ
ν Sµ , (A50)

where Γ̃λ
µν is the Levi-Civita connection. Please note that using (A44), the final form of the

connection in (A50) can be rewritten as

Γλ
µν = Γ̃λ

µν + X(t)uλhµν + Y(t)uµhλ
ν , (A51)

with
X(t) = −Y(t) = −2Φ(t) . (A52)

Finally, exploiting (A45), we are left with

Γλ
µν = Γ̃λ

µν +
κλ0

4
φ̇
(

uλhµν − uµhλ
ν

)
, (A53)

written in terms of the temporal derivative of the scalar, φ̇. In fact, in this case, it is the
scalar field that produces spacetime torsion (cf. the first equation in (A42)).
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