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The purpose of this article is to evaluate the performance of the developed iterative method for distribut-
ing tasks in a swarm of UAVs in a clustered target field. This article presents an iterative method for dis-
tributing tasks among agents of a swarm of unmanned aerial vehicles (UAVs) in a clustered target field,
when the number of tasks significantly exceeds the number of agents. The main tasks solved by UAVs are
surveillance and reconnaissance, detection of dangerous objects or places of emergency, search for vic-
tims, etc. The efficiency of solving the problems listed above is achieved by the simultaneous use of a
group of UAVs, the elements (agents) of which can carry out the tasks of inspecting and scanning various
areas in parallel. At the same time, the number of tasks can significantly exceed the number of UAV
swarm agents. To organize the work of a swarm of UAVs in this case, it is necessary to solve the problem
of labor division, considering the conditions of the problem. The results showed the high efficiency of the
proposed task distribution method according to the criterion of minimizing the travel distance of agents.
� 2023 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Robotic technologies are being introduced into all spheres of
human activity. Robots are used for performing routine tasks,
exploration, liquidation of natural and man-made emergencies,
in agriculture, in geology, in counterterrorist operations, etc. At
the same time, the intensive development of microelectronics
has led to the miniaturization of robots and the ability to use
groups of numerous robots – multi-robotic systems (MRS).

This article uses the terminology of group robotics introduced
in publications (Kalyaev et al., 2009; Zakiev et al., 2018). The
MRS group is understood as a homogeneous or heterogeneous
group of agents with identical or different sets of specializations,
structure, and sensory equipment. The advantages of MRS applica-
tion are high mobility, low cost of maintenance, the ability to per-
form multiple tasks, as well as the scalability.

MRS groups are usually stochastic and non-linear, so the con-
struction of mathematical models for testing and optimizing the
control models is difficult. The lack of methods for the transition
from the specific behavior of an agent to the universal behavior
of a group does not allow to build an effective system for managing
groups of robots (Chung et al., 2018). In this regard, a huge class of
tasks for controlling MRS groups appears. One of these tasks is
commonly known as the task of the labor division. Currently, many
studies are devoted to the problem of tasks distribution between
agents of a swarm of UAVs or agents of a group of MRSs. Many
well-known scientists propose their own methods and algorithms
for solving this problem.

An analysis of Pshikhopov et al. (2015) shows a wide variety of
theoretical methods for solving this problem, especially for an
equal number of agents and subtasks. By popularity, we can distin-
guish heuristic algorithms (Kowalczyk, 2002; Mathew et al., 2015),
analytical algorithms (Chopra et al., 2017; Nam and Shell, 2015;
Notomista et al., 2019; Zavlanos et al., 2008), algorithms based
on market economy models (Bertsekas and Castañon, 1991; Luo
et al., 2015; Zavlanos et al., 2008), potential field methods
(Zavlanos and Pappas, 2008, 2007), probabilistic and random algo-
rithms (Berman et al., 2009; Liu et al., 2020), methods based on
machine learning and ANNs (Mouton et al., 2011; Zhao et al.,
2021), fuzzy logic methods (Mukhedkar and Naik, 2013; Wei
et al., 2021), ant colony algorithms (Brutschy et al., 2012; Liao
et al., 2014; Oliveira et al., 2017; Payton et al., 2005, 2001; Yuan
et al., 2008), dynamic and integer programming methods
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(Murphey, 2000; Sikanen, 2008; Yu and LaValle, 2016), genetic
algorithms (Patel et al., 2020; Shima et al., 2006; Soleimanpour-
Moghadam and Nezamabadi-Pour, 2020), blockchain and cloud
computing (Husheng et al., 2021; Msala et al., 2019), mixed algo-
rithms (Zhang et al., 2012), particle swarm optimization (Kong
et al., 2019; Wei et al., 2020), etc.

Research (Labella et al., 2007) carried out under the supervision
of the Belgian scientist Dorigo is devoted to applications based on
the analysis of the behavior of insect swarms for various tasks,
including the division of labor in groups of small insects. Dorigo
has a task distribution method that can adapt to dynamic changes
in the configuration of agents. However, the issue of changing the
configuration of the MRS group in the process of performing tasks
is worthy of separate consideration and will be investigated for the
proposed methods in the future.

Previously, in (Petrenko et al., 2020; Ryabtsev et al., 2022), a
method was proposed for tasks distribution (division of labor) in
a swarm of UAVs monitoring the dynamic zone of an emergency.
This paper presents an adaptation of the earlier proposed method
and a wide range of experimental studies of the effectiveness of
the developed method. This article considers a particular case of
labor division in a swarm of UAVs, when the number of tasks sig-
nificantly exceeds the number of agents, and it is proposed to dis-
tribute the agents not by tasks, but by clusters of tasks.

As an analogue of the proposed iterative method, we consider
the greedy task distribution algorithm due to its universality, con-
vergence of the solution (Buffa et al., 2012), and wide usage for task
distribution in homogeneous MRS groups, including UAV swarms.
The idea of the greedy algorithm is to search for local optima, each
time checking the admissibility of the current partial solution
(Bouamama et al., 2022).

The purpose of this work is to develop an iterative method for
distributing tasks in a swarm of UAVs, which would allow to match
agents to clusters, because of a collective decision-making proce-
dure. The criterion of matching is minimal travel distance of an
agent. The method is used for building a flight task to performmul-
tiple tasks grouped into clusters.

The structure of the article includes 5 sections. In Materials and
Methods, the mathematical formulation of the research problem is
given, and the description of the developed method and simulation
environment for experimental studies is provided. In the results
section, numerical indicators of the effectiveness of the proposed
method are given in comparison with the analogue. The Conclusion
section summarizes the results of the study.
2. Materials and methods

2.1. Mathematical formulation of the problem

Let there be n agents ai of the set A and m tasks qj of the set Q .
The distribution of tasks consists in the performance of each agent
ai a certain number of subtasks qj in such a way that all the sub-
tasks of the set Q are completed in the minimum time t if the
agents have some energy potential ei. In this paper we consider
the case when the energy potential of an agent is equivalent to
the path traveled by the agent. Schematically, the input data looks
like this (Fig. 1).

Mathematically, the problem statement can be presented in the
following form. The set of the agents ai of a swarm of UAVs is rep-
resented as A ¼ ½a1; a2; � � � ; ai; � � � an�:

ai ¼ xi; yi; zi; ei½ �; ð1Þ

where xi; yi; zi – current coordinates of the agent ai a swarm of
UAVs; ei – energy potential of the agent ai.
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The set of subtasks qj of global task Q ¼ ½q1; q2; � � � ; qj; � � � qm�
presented as:

qj ¼ ½xj; yj; zj; ej� ð2Þ
where xj; yj; zj – coordinates of the subtask; ej – the energy reserve
of the task.

Clusters of subtasks formed according to the geometric charac-
teristics of the medium are represented as
W ¼ fw1;w2; � � � ;wk; � � �wcg, where k is the cluster number; c is
the number of clusters. Clustering of the subtask field is performed
by dividing the zone into cubes of the same size. Cluster of sub-
tasks wk after splitting includes some subtasks qi.

Function eij characterizes the energy costs of the agent ai to
move to a subtask qj.

The set B ¼ ½b1; b2; � � � ; bp; � � � bu� of UAV swarm agent base sta-
tions, where p – number of the base station; u – number of stations
ðu � 1Þ, characterized by coordinates, are represented as:

bp ¼ ½xp; yp; zp�: ð3Þ
The result of the task allocation method is the mapping R,

matching each agent ai of a swarm of UAVs with a unique task
qj 2 Q , the task of returning to the base bp 2 B, or a waiting task£:

R : A ! Q [ B [£: ð4Þ
Global task Q is considered completed (reflection F), if the cur-

rent energy reserve of the subtasks ej ¼ 0 is equal to zero, provided
that all agents ai of the set A returned to the base station

F : Q ¼
XK
k¼1

ek ! 0; 8ai 2 AR aið Þ 2 B ð5Þ
2.2. Basic task allocation method

The idea of the basic method of distributing tasks in a swarm of
UAVs when solving multiple tasks is to carry out iterative proce-
dures for establishing relationships of the ‘‘cluster-agent” type. In
this paper, three variants of the iterative method of distributing
clusters between agents are proposed: selection by agents ai near
clusters (1 V), selection by agents ai distant clusters (2 V) and uni-
form distribution of clusters (3 V) between agents ai. The difference
between the variants of the method lies in the order in which clus-
ters are determined for the selection of agents. In option 1 V, the
tasks are considered qj in clusters wk from the nearest to the most
distant from the launch site bp agents ai of a swarm of UAVs, in
variant 2B, from the most distant to the closest clusters. In option
3B, a certain number of evenly distributed clusters are selected wk

in the goals field of the global task Q, equal to the number of
agents. A schematic description of the variants of the task distribu-
tion method is presented in Fig. 2, where: (a) – the choice of near
clusters; (b) – the choice of distant clusters; (c) – a uniform selec-
tion of clusters; (d) – a greedy algorithm for the distribution of
tasks.

The algorithm of the basic method consists of 5 steps.
Step 1. Selecting clusters. Input data for agents ai are the coor-

dinates of the launch center bp of agents, cluster centers wp, task
coordinates qk. Additional agents ai exchange their own coordi-
nates ai ¼ ½xi; yi; zi�.

Regardless of the variant of the task distribution method, the
vector lengths between the task clusters and the agent’s base sta-
tion are calculated:

Lwp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wpx � bx
� �2 þ wpy � by

� �2
þ wpz � bz
� �2r

.

Next, a ranking is made, and a list of the most remote and
nearby clusters is compiled. For the variant of uniform distribu-
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Fig. 1. The input data scheme of the proposed iterative method for distributing tasks in a swarm of UAVs.
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Fig. 2. Scheme of task distribution methods: (a) selection of near clusters; (b) selection of distant clusters; (c) uniform selection of clusters; (d) greedy task distribution
algorithm.
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tion of tasks, it is proposed to select clusters as follows. In the
resulting list of cluster deletions, we calculate the length of the
vector of all cluster tasks to the agent base station using an
identical formula:

Lqkwi
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qix � bxð Þ2 þ qiy � by

� �2
þ qiz � bzð Þ2

r
:
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We select the most remote task in each cluster. Next, we com-
pile a ranked list of the most remote tasks in each cluster. The
resulting set of tasks from the list is distributed as follows. With
the number of agents n, we select clusters with the first and last
tasks in the list. We divide the number of remaining tasks Nz � 2
on the quantity n� 2 agents, Mz ¼ Nz�2

n�2 . The resulting value is
rounded down to an integer and select each Mz the task from the



V. Petrenko, F. Tebueva, V. Antonov et al. Journal of King Saud University – Computer and Information Sciences 35 (2023) 283–291
end of the list. Thus, we get n number of tasks, each of which is tied
to its own cluster. A set of these clusters will participate in the
distribution.

Step 2. Cluster analysis. Depending on the selected method
option (1B, 2B, and 3B), a certain cluster is received for evaluation
by a group of agents Wn.

Agents calculate the metrics of efficiency and the ability to per-
form tasks in the cluster in the decision-making protocol, repre-
sented by the efficiency matrix F:

The decision-making protocols are identical and are found in all
agents ai. Performance metric pij is determined based on the energy
potential of the tasks in the cluster and the agent’s reserve as fol-
lows. The expected energy costs are calculated eik on moving the
agent to the cluster and energy costs eijk performing tasks in a clus-
ter by solving a transport problem. If eik þ eijk þ eb > ei, where eb –
the energy costs of returning the agent to the base point, then the
agent refuses to perform the task

pij ¼
ei

eik þ eijk þ eb
: ð6Þ

Step 3. Collective decision-making. After calculating the perfor-
mance metrics, the agents ai they begin the decision-making pro-
cedure. The procedure of collective decision-making uses the
majority principle and includes 3 rounds.

In the first round the agents ai swarms of UAVs launch decision-
making protocols in which each agent sets its own metrics pij per-
forming tasks in the cluster. The protocol is considered collected if
it contains the number of metrics pij, equal to the product of the
number of agents by the number of tasks in the cluster.

At the second round the agents each in their protocol supple-
ment the performance matrix with a column containing the sum
of performance metrics by rows rwk

i ¼ Pn
j¼1pij, i ¼ 1; � � � ;m:

The result of sum criterion for deciding on the choice of agent ai
to perform tasks in the cluster found by the formula:

r0wk
i ¼ max

i
rwk
i : ð7Þ

The agent ai, which corresponds to the value r0wk
i , is assigned the

cluster wk.
In the third round, agents check their records in the decision-

making protocol. If the highest value of the product criterion does
not relate to the ID of the i\agent of the UAV swarm, then the agent
refuses to perform tasks in the cluster. If the agent ID matches the
ID in the row with the maximum criterion, then the agent is
assigned the cluster in question and the agent starts performing
tasks. The cluster and the agent are excluded from the discussion
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for the duration of the tasks performed by the winning agent in
the cluster in question. At the same time, the completion of each
task is recorded by each agent and sent to the group.

Step 2 is repeated if there are free clusters and unoccupied
agents.

Step 4. Performing tasks within the cluster. When assigning a
cluster to an agent, the agent proceeds to the 2nd round - perform-
ing tasks within the cluster. The sequence of tasks in the cluster is
determined by a simple iteration when qjwk

< 10, if qjwk
> 10 the

method of simulated annealing is used to find the shortest way
to perform tasks in a cluster.

Simulation of annealing in iterative problems can be used to
approximate the global minimum of functions with many free
variables.

The algorithm of the simulated annealing method (Wang et al.,
2022) is probabilistic and shows good results in practice when
solving NP-complete problems.

Let S be the set of states of the system, which in the physical
sense reflect the function of energy consumption u of agent ai to
move through tasks qj in claster wk. Power consumption function
u it calculated by the agent based on the characteristics of the
agent, its condition and environmental parameters, i.e. how much
energy the agent will spend on moving through tasks qj of cluster
wk in the generated sequence of visiting tasks.

Function F based on the initial state sv (where v – iteration step,
1, 2, 3. . .) generates a new candidate state svþ1, which the system
can switch to, or maybe discard, depending on tv – system state
temperature. Here is the algorithm of the method.

1. A random state is applied to the input sv with the initial tem-
perature tv ¼ tmax, the lower temperature limit tmin;

2. While tv > tmin:
a. svþ1 ¼ FðsvÞ– starting the function of generating a new sys-

tem state;
b. Du ¼ uðsvþ1Þ �uðsv Þ;
c. If Du � 0, then tvþ1 ¼ tv

u svð Þ
uðsvþ1Þ;

3. If Du � 0 then the temperature drops: tmax ¼ tvþ1: A new itera-
tion is repeated, where the state is fed to the input svþ1 and
tmax ¼ tvþ1:

4. If Du > 0 then a new iteration is carried out with probability:

P Duð Þ ¼ exp

�v

tmax�
u svþ1ð Þ
u svð Þ : ð8Þ

For the effective operation of the method, restrictions on the
number of iterations are additionally introduced v .

Step 5. Iterativity. The procedure is repeated from the second
step until the end of free clusters. When an agent is released from
performing tasks in a cluster, according to the principle of the
method, the agent independently assigns itself a cluster, notifying
other agents of the establishment of a new cluster affiliation.
2.3. Software simulation

The software simulation was carried out in the CoppeliaSim
system. To evaluate the effectiveness of the proposed solutions
for tasks distribution in a swarm of UAVs, 20,000 computational
experiments were conducted. The following methods are imple-
mented in the simulation: an iterative method of task distribution;
a variant with remote clusters; a variant with nearby clusters; a
variant with distributed clusters and a greedy algorithm for task
distribution (Montenegro et al., 2022).

UAV swarm agents were implemented in a three-dimensional
environment (Fig. 3). In the lower figure, the calculated flight paths
of the agents are highlighted in color, the agents are marked, and



Fig. 3. An example of a software implementation of an iterative task distribution method in CoppeliaSim.

Table 1
Average time for UAV swarm agents to complete tasks in clusters.

Average time and cluster size Option of distant clusters A variant of near clusters Uniform distribution option Greedy algorithm

5 � 18 � 250 43.56 47.74 43.04 38.80
5 � 32 � 250 40.25 39.04 39.49 38.80
5 � 50 � 250 39.49 40.08 40.10 38.80
7 � 18 � 250 36.06 38.37 39.78 24.42
7 � 32 � 250 34.68 35.64 33.22 24.42
7 � 50 � 250 33.50 34.09 35.03 24.42
10 � 18 � 250 29.81 34.12 26.29 24.02
10 � 32 � 250 29.43 32.51 29.52 24.02
15 � 18 � 250 28.63 30.99 25.50 21.03
15 � 32 � 250 25.21 26.65 25.94 21.03
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the launch points are green. The points in the cluster field are indi-
cated by color spheres, and the clusters are highlighted as cubes.

The simulation was performed for 100 tasks for swarm sizes of
5, 7, 10 and 15 agents. Initial coordinates of agents and tasks were
generated randomly with a uniform distribution on the map. The
cluster sizes were 18, 32 and 50 tasks. The results were summed
up for each generated map. In total, 250 maps were generated
for one set of agents and clusters.
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3. Results and discussion

To evaluate the effectiveness in the software environment, the
distance traveled by all agents to complete tasks and the map exe-
cution time were measured. The results of the task completion
time and distance traveled for 5, 7, 10 and 15 agents when dividing
the task field into 18, 32 and 50 clusters are presented in Tables 1
and 2. The tables in bold indicate the best values of time or dis-



Table 2
Average distance travelled when UAV swarm agents perform tasks in clusters.

Average time and cluster size Option of distant clusters A variant of near clusters Uniform distribution option Greedy algorithm

5 � 18 � 250 717.68 647.11 701.54 596.13
5 � 32 � 250 707.25 487.76 582.73 596.13
5 � 50 � 250 708.37 501.00 585.10 596.13
7 � 18 � 250 819.80 752.10 800.71 927.53
7 � 32 � 250 791.44 629.82 699.79 927.53
7 � 50 � 250 723.58 603.83 650.08 927.53
10 � 18 � 250 974.50 910.94 1226.57 951.11
10 � 32 � 250 924.57 803.26 815.64 951.11
15 � 18 � 250 1196.70 1165.47 1226.82 1264.70
15 � 32 � 250 1187.22 1107.00 1153.00 1264.70

Fig. 4. A petal diagram of the total execution time by agents when performing tasks with the studied variants of the method.
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tance for the method of distributing tasks in a swarm of UAVs.
Figs. 4 and 5 show the results of the studies presented by the petal
diagrams. The proximity of the contour of the diagram to the cen-
ter of the petal reflects the best results of the experiments.
Fig. 5. A petal diagram of the total distance traveled by agen
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Based on the results of the study, it can be noted that according
to Table 1, the greedy task allocation algorithm shows the best
results in terms of task execution time.

The time efficiency of the greedy task allocation algorithm is
from 2% to 34% reduction in time relative to the iterative method.
ts when performing tasks by the methods under study.
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At the same time, it is worth noting that the optimal energy effi-
ciency is providedbyavariant of thenear clustermethod. The reduc-
tionofenergyconsumptionby themethodofnear clusters relative to
the greedy algorithm for the distribution of tasks is up to 28%,which
is a scientific increment obtained because of the study.

Additionally, the standard deviations of the presented variants
of the iterative method considered. The standard deviation will
allow you to assess how variable the effectiveness of the distribu-
tion of tasks. Tables 3 and 4 show the standard deviations of the
experimental results in terms of time and distance travelled by
agents. The standard deviation diagrams are shown in Figs. 6 and 7.

The graphs of standard deviations show that the method of near
clusters, when demonstrating the best results in minimizing the
distance travelled by agents, has a large spread of values in the pre-
sented set with the average value of the set. The distributed cluster
method shows the best results of the standard deviation for esti-
mating the distance travelled by agents. It can be concluded that
the effectiveness of the distribution of tasks according to the
Table 3
Standard deviations in the time when agents perform tasks in clusters.

Mean square deviations in time and cluster size Variant of distant clusters V

5 � 18 � 250 1.43 3
5 � 32 � 250 0.99 4
5 � 50 � 250 0.87 2
7 � 18 � 250 1.18 1
7 � 32 � 250 2.23 3
7 � 50 � 250 0.86 1
10 � 18 � 250 2.44 2
10 � 32 � 250 1.33 0
15 � 18 � 250 1.98 2
15 � 32 � 250 1.06 1

Table 4
Standard deviations in distance when agents perform tasks in clusters.

Mean square deviations in time and cluster size Variant of distant clusters V

5 � 18 � 250 13.79 1
5 � 32 � 250 19.13 3
5 � 50 � 250 18.92 4
7 � 18 � 250 23.64 1
7 � 32 � 250 37.00 3
7 � 50 � 250 20.65 2
10 � 18 � 250 28.29 1
10 � 32 � 250 19.60 1
15 � 18 � 250 47.05 1
15 � 32 � 250 45.09 7

Fig. 6. A bar chart of standard deviations in the time of exec
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method of nearby clusters is the most volatile, while, even in con-
ditions of increased variability, the method is able to provide
optimal energy efficiency.

According to the results of experimental researches special
attention should be paid to the method of distant clusters, which,
in terms of the global task execution time and energy efficiency,
shows worse results compared to the method of near and dis-
tributed clusters. Figs. 4 and 5 show that the far cluster method
shows average results between task execution time and energy
efficiency. The method of distant clusters will be of interest in
the division of labor in a rarefied field of tasks with a limited
energy supply of agents. In the future, studies will be carried out
on the effectiveness of this method when performing the most
remote tasks. This article shows that the application of the method
of distant clusters in the conditions of uniformly distributed tasks
in the field of goals is not effective.

This article describes and evaluates the effectiveness of an
iterative method of tasks distribution in a swarm of MRS with a
ariant of near clusters Variant of uniform distribution Greedy algorithm

.23 1.51 1.10

.17 0.85 1.10

.37 0.64 1.10

.41 1.65 0.89

.89 2.30 0.89

.61 1.15 0.89

.22 1.42 0.60

.88 0.29 0.60

.98 0.84 0.61

.05 0.57 0.61

ariant of near clusters Variant of uniform distribution Greedy algorithm

9.04 15.12 27.19
2.34 16.74 27.19
4.54 19.05 27.19
6.90 12.83 19.77
3.97 33.16 19.77
2.36 24.30 19.77
4.82 15.45 30.18
0.30 25.20 30.18
9.38 9.70 31.09
.01 51.85 31.09

ution of tasks by agents using the methods under study.



Fig. 7. A bar chart of standard deviations by the total distance traveled by agents when performing tasks by the methods under study.
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significant excess of the number of tasks over the number of agents
(by 5–20 times). Three variants of this method were proposed,
which differ in the order of choosing clusters of tasks for establish-
ing the ‘‘cluster-agent” relationship. To evaluate the effectiveness
of the proposed methods, we compared them to a greedy task dis-
tribution algorithm. To conduct the experimental studies, we
implemented a simulation model of a group of UAVs in the Cop-
peliaSim environment (Elmokadem and Savkin, 2021). Based on
the results of 20,000 experiments, we conclude that it is promising
to use the iterative method from near clusters to reduce the energy
expended by agents. The travel distance-wise efficiency of the near
cluster variant relative to the greedy task distribution algorithm is
up to 28% higher, depending on the number of agents and tasks in
the cluster, which is a significant advantage. At the same time, in
comparison with the greedy algorithm, the variant of near clusters
receives a loss in task execution time by an amount from 2% to 34%.
4. Conclusions

Thus, understanding the effectiveness of the proposed methods
and measures of variability of feature values, in subsequent stud-
ies, it is possible to develop an algorithm for choosing a method
for distributing tasks in a swarm of UAVs, which will allow choos-
ing the method with the highest efficiency indicators for perform-
ing a global task in a clustered field of targets.

The analysis of the standard deviations of the results showed
the acceptable stability of the variant of distributed clusters.

In the continuation of the research, we propose to develop a
methodology for choosing the method of tasks distribution in the
MRS group, which will allow choosing the method with the highest
efficiency indicators for fulfilling global targets. We plan to refine
the iterative method of distributing tasks in the MRS group to per-
form heterogeneous tasks with importance criteria by introducing
‘‘master–slave” subsystems of agents.

The proposed task distribution methods are able to adapt to
changing the configuration of a group of agents by redistributing
task clusters in the process of their execution. The effectiveness
of the proposed methods, taking into account the limitation of
the energy reserve of agents under conditions of a change in the
configuration of a group of agents (a decrease or increase in their
number), is planned to be studied in detail in the following works.
An analogue of the proposed research will be algorithms inspired
by natural systems.
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