## UDC 622.765.4 DEVELOPMENT OF ENRICHMENT REAGENT REGIME OF POLYMETALLIC ORES WITH OXYGEN-CONTAINING AND SULFUR-CONTAINING FLOTATION REAGENTS

### **Kaliyev Olzhas**

*o.kaliyev\_99@mail.ru* 4th year bachelor of the L.N.Gumilyov Eurasian National University, Nur-Sultan, Republic of Kazakhstan, 010008 Scientific supervisor - Amerkhanova Shamshiya

#### Introduction

The separation of polymetallic ores at this stage of the processing industry development is associated with the peculiarities of ore formation, fine inclusions, and mutual germination among themselves. Therefore, scientific research is focused on finding effective flotation reagents that provide the necessary enrichment indicators.

#### Methodology

Copper-lead ore and titanium ore was used in the work. The collectively selective flotation of Cu-Pb ore, sodium oleate, sodium dibutyldithiophosphate was carried out as collectors. The collectors for titanium ore were sodium oleate and sodium benzenesulfonate. Variable parameters change of the hydrodynamic (impeller rotation frequency, air flow rate) and reagent regimes (medium regulator's consumption, collector consumption) at the flotation: air flow rate of 20-60 l/h, impeller rotation frequency of 30-40 Hz, lime consumption of 1000-3000 g/t, collector consumption of 50-150 g/t. Ore enrichment was carried out on a laboratory chamber-type flotation machine with mechanical mixing of the FML brand according to method [1]. Elemental analysis was performed on the ore grade instrument (Spektrolab).

### **Results and discussion**

Based on the modified scheme of collectively selective flotation of Cu-Pb ore using sodium oleate in the main flotation, a schematic diagram was drawn up (Figure 1) and calculations of purification operations of enrichment were carried out (Tables 1, 2) [2].

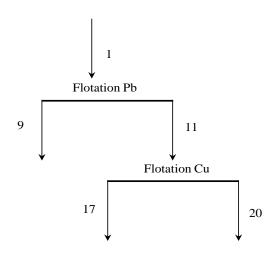



Figure 1 - Schematic diagram of flotation of Cu-Pb ore

| Product | Name of products      | Yield, % | Content, % |       | Extraction,% |        |
|---------|-----------------------|----------|------------|-------|--------------|--------|
| Number  |                       |          | Pb         | Си    | Pb           | Си     |
| 9       | <i>Pb</i> concentrate | 13.79    | 0.25       | 0.01  | 68.95        | 0.14   |
| 17      | Cu concentrate        | 1.60     | 0.07       | 39.46 | 2.24         | 63.78  |
| 20      | Tailings              | 84.61    | 0.02       | 0.42  | 28.81        | 36.08  |
| 1       | Initial ore           | 100.00   | 0.99       | 0.05  | 100.00       | 100.00 |

# Table 2 - Balance for final products of flotation

# Table 3 - Balance of enrichment products of Cu-Pb ore

| Stage<br>№ | Name of operations and products  | <i>Q</i> , g/h | γ, %   | β, % | ε, %   |
|------------|----------------------------------|----------------|--------|------|--------|
| I          | Basic lead flotation             |                |        |      |        |
| -          | Entrance:                        |                |        |      |        |
| 1          | Classifier drain                 | 375            | 100    | 0.05 | 100    |
| 12         | Combined industrial product      | 146.57         | 39.09  | 0.02 | 14.95  |
| 2          | Total:                           | 521.57         | 139.09 | 0.04 | 114.95 |
|            | Egress:                          |                | 10,10, | 0.01 |        |
| 3          | Concentrate of main flotation    | 197.86         | 52.76  | 0.08 | 83.02  |
| 4          | Tailings of main flotation       | 323.71         | 86.32  | 0.02 | 31.93  |
|            | Total:                           | 521.57         | 139.09 | 0.04 | 114.95 |
| II         | The first cleanup flotation      |                | 10,10, | 0.01 |        |
|            | Entrance:                        |                |        |      |        |
| 3          | Concentrate of main flotation    | 197.86         | 52.76  | 0.08 | 83.02  |
| 8          | The second cleanup tailings      | 37.16          | 9.91   | 0.03 | 5.63   |
| 5          | Total:                           | 235.03         | 62.67  | 0.07 | 88.65  |
| 0          | Egress:                          |                |        |      |        |
| 6          | Concentrate of the first cleanup | 88.88          | 23.70  | 0.16 | 74.58  |
| 7          | Tailings of the first cleanup    | 146.15         | 38.97  | 0.02 | 14.07  |
|            | Total:                           | 235.03         | 62.67  | 0.07 | 88.65  |
| III        | The second cleanup flotation     |                |        |      |        |
|            | Entrance:                        |                |        |      |        |
| 6          | Concentrate of the first cleanup | 88.88          | 23.70  | 0.16 | 74.58  |
|            | Total:                           | 88.88          | 23.70  | 0.16 | 74.58  |
|            | Egress:                          |                |        |      |        |
| 9          | Concentrate                      | 51.71          | 13.79  | 0.25 | 68.95  |
| 8          | Tailings of the second cleanup   | 37.16          | 9.91   | 0.03 | 5.63   |
|            | Total:                           | 88.88          | 23.70  | 0.16 | 74.58  |
| IV         | Control flotation                |                |        |      |        |
|            | Entrance:                        |                |        |      |        |
| 4          | Tailings of main flotation       | 323.71         | 86.32  | 0.02 | 31.93  |
|            | Total:                           | 323.71         | 86.32  | 0.02 | 31.93  |
|            | Egress:                          |                |        | 1    |        |
| 10         | Froth product of control         | 0.42           | 0.11   | 0.39 | 0.88   |
| 11         | Tailings of control              | 323.29         | 86.21  | 0.02 | 31.05  |
|            | Total:                           | 323.71         | 86.32  | 0.02 | 31.93  |

Calculation of the lead flotation cycle. The calculation of the first flotation cycle was carried out according to the following scheme (Figure 2) with previously identified products.

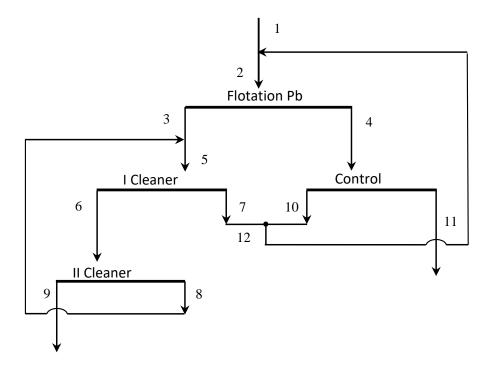



Figure 2 - Lead Flotation Cycle

The material balance calculation of lead flotation was carried out using the Solver Excel software package. The calculation results of qualitative-quantitative scheme of lead flotation cycle are given in Table 1.

Calculations were carried out for the copper flotation cycle (Figure 3).

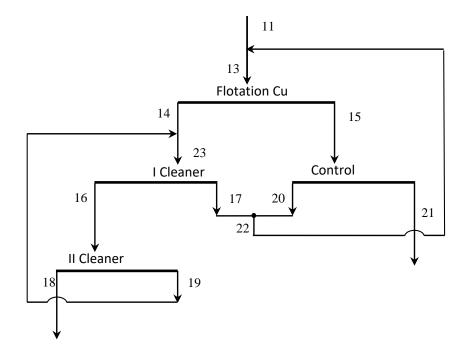



Figure 3 – Copper flotation cycle

Thus, to calculate the copper flotation cycle, the initial indicators are:

a) two indicators relating to the source data (Q<sub>1</sub> and  $\alpha^{Cu}$ );

b) four indicators of copper recovery in flotation products;

c) four indicators of copper content in concentrates of operations.

The number of initial indicators is 4, number of stages is 4. The results are given in Table 3.

| Stage № | Name of operations and products    | <i>Q</i> , g/h | γ, %  | β, %  | ε, %   |
|---------|------------------------------------|----------------|-------|-------|--------|
| I       | Main copper flotation              |                |       |       |        |
|         | Entrance:                          |                |       |       |        |
| 11      | Tailings of lead flotation         | 323.29         | 86.21 | 1.15  | 99.86  |
| 22      | Combined industrial product        | 36.54          | 9.74  | 4.00  | 33.96  |
| 13      | Total:                             | 359.83         | 95.95 | 1.60  | 133.82 |
|         | Egress:                            |                |       |       |        |
| 14      | Concentrate of main flotation      | 30.71          | 8.19  | 9.51  | 78.65  |
| 15      | Tailings of main flotation         | 329.12         | 87.76 | 0.72  | 55.18  |
|         | Total:                             | 359.83         | 95.95 | 1.60  | 133.82 |
| II      | The first cleanup flotation        |                |       |       |        |
|         | Entrance:                          |                |       |       |        |
| 14      | Concentrate of main flotation      | 30.71          | 8.19  | 9.51  | 78.65  |
| 19      | The second cleanup tailings        | 7.34           | 1.96  | 2.67  | 4.56   |
| 23      | Total:                             | 38.06          | 10.15 | 9.40  | 83.21  |
|         | Egress:                            |                |       |       |        |
| 16      | Concentrate of the first cleanup   | 13.34          | 3.56  | 19.01 | 68.34  |
| 17      | Tailings of the first cleanup      | 24.71          | 6.59  | 2.59  | 14.87  |
|         | Total:                             | 38.06          | 10.15 | 9.40  | 83.21  |
| III     | The second cleanup flotation       |                |       |       |        |
|         | Entrance:                          |                |       |       |        |
| 16      | Concentrate of the first cleanup   | 13.34          | 3.56  | 19.01 | 68.34  |
|         | Total:                             | 13.34          | 3.56  | 19.01 | 68.34  |
|         | Egress:                            |                |       |       |        |
| 18      | Concentrate                        | 6.00           | 1.60  | 39.46 | 63.78  |
| 19      | Tailings of the second cleanup     | 7.34           | 1.96  | 2.67  | 4.56   |
|         | Total:                             | 13.34          | 3.56  | 19.01 | 68.34  |
| IV      | Control flotation                  |                |       |       |        |
|         | Entrance:                          |                |       |       |        |
| 15      | Tailings of main flotation         | 329.12         | 87.76 | 0.72  | 55.18  |
|         | Total:                             | 329.12         | 87.76 | 0.72  | 55.18  |
|         | Egress:                            |                |       |       |        |
| 20      | Froth product of control flotation | 11.83          | 3.15  | 5.99  | 19.10  |
| 21      | Tailings of control flotation      | 317.29         | 84.61 | 0.42  | 36.08  |
|         | Total:                             | 329.12         | 87.76 | 0.72  | 55.18  |

Table 3 - Balance of copper enrichment products

Results of circuit experiments confirm that the following concentrates can be obtained on the developed technological scheme and reagent mode: lead concentrate with lead content of 0.25% and extraction 68.95% in the inter-cycle flotation, copper concentrate with lead content of 39.46% and extraction of 63.78% in copper flotation cycle; the use of cleanup operations makes it possible to increase the valuable component content of  $\beta_{Pb}$  from 0.08 to 0.25%,  $\beta_{Cu}$  from 9.51 to 39.46%. However, in both cases, the metal extraction and concentrate amount are reduced.

The introduction to the cycle circuit for a combined industrial product in lead and copper flotations is caused by the need to reduce metal losses with tailings.

Thus it is shown that the use of sodium oleate as a primary flotoreagent in lead flotation cycle and sodium dibutyldithiophosphate in the copper flotation cycle allows to develop the selective and circuit modes. Conclusion

Calculation of the qualitative-quantitative scheme of flotation of Cu-Pb ore with the use of sodium oleate as the main reagent was carried out. It is shown that the scheme should include two clean-up operations at the Pb flotation stage, one control operation, at the copper flotation stage, two clean-ups of selective concentrate and closed-loop control flotation are also envisaged. An increase in the content of Cu and Pb in the concentrates of the same name was established using the use of  $\beta_{Pb}$  purge operations from 0.08 to 0.25%,  $\beta_{Cu}$  from 9.51 to 39.46%. However, in both cases, the extraction of metal and the amount of concentrate are reduced.

## References

1. Vasyunina, N. V., Belousov, S. V., Dubova, I. V., Morenko, A. V., & Druzhinin, K. E. Recovery of Silicon and Iron Oxides from Alumina-Containing Sweepings of Aluminum Production, Russian Journal of Non-Ferrous Metals, **59** (3), 230–236 (2017) https://doi.org/10.3103/s1067821218030148.

2 Komlev S.G. Technological calculations in the enrichment of minerals (in Russian). Choice of equipment. Ekaterinburg, USTU.-2007.-57 p.