УДК 29.15.03; 29.15.17; 29.15.19 ЗАВИСИМОСТЬ ОБМЕННОГО СЕЧЕНИЯ DWBA ОТ РАДИУСА Rь И ГЛУБИНЫ ПОТЕНЦИАЛА Vь

F. Ерғалиұлы¹, Д. Солдатхан¹, Р.Ш. Тұрар¹, Сабидолда А.², А.С. Сагадиев¹, Сабырбеков Н.Н.¹

(E-mail: <u>gani.yergaliuly@mail.ru</u>)

¹Евразийский национальный университет имени Л.Н.Гумилева, Нур-Султан, Казахстан ²Казахский национальный университет имени аль-Фараби, Алматы, Казахстан

Научные руководители: А.К. Морзабаев¹, Н. Амангелді¹, Буртебаев Н.Н.²

Введение

Изучение упругого взаимодействия легких ядер на ядрах 1р-оболочки при энергиях вблизи кулоновского барьера представляет особый интерес с точки зрения установления надежных значений параметров потенциалов взаимодействия тяжелых ионов [1] для астрофизических приложений. Особенный интерес представляет упругое рассеяние для анализа реакций переноса происходит при низких энергиях (но значительно выше кулоновского барьера) и для легких ядер, соответствующих относительно низким значением кулоновского параметра - η. В этой области реакции передачи могут быть изучены с достаточным энергетическим разрешением для большого диапазона снарядов и ядер-мишеней. В этом диапазоне энергий угловые распределения упругого рассеяния часто показывают нерегулярные структуры или вообще не имеют структур из-за кулоновского затухания. Поэтому анализ становится более сложным.

Доминирующими чертами рассеяния тяжелых ионов по сравнению с рассеянием легких снарядов являются (i) сильное поглощение и (ii) сильное кулоновское взаимодействие. Таким образом, форма угловых распределений сильно зависит от энергии снарядов и параметра - η. При высоких энергиях, когда η мало, дифференциальное сечение демонстрирует дифракционные структуры Фраунгофера, тогда как при больших η сечение гладкое и сильно уменьшается с увеличением угла.

Для анализа реакций переноса тяжелых ионов с помощью DWBA (МИВ) или дифракционных моделей необходимо описание процесса упругого рассеяния. Однако для удовлетворительного описания упругого рассеяния тяжелых ионов для энергий около и выше кулоновского барьера нужно знать параметры потенциала связанного состояния.

Целью настоящей работы является получение и оптимальных параметров глубины потенциала связанного состояния ¹¹В+р для дальнейшего расчета передачи протона в упругом рассеянии ¹¹В+¹²С.

Параметры глубины потенциала связанного состояния

В наших расчета ппредполагалось, что потенциал, связывающий протон с ядром ¹¹В в ¹²С, имеет форму Вудса-Саксона с геометрическими параметрами r=1.25 Фм, a=0.65 Фм [2] и глубиной, скорректированной для получения соответствующей є- энергии связи (см. таблица 1). Соответствующий потенциал и волновоя функция связанного 1p_{3/2} состояния протона в ядре ¹²С былы получены с использованием программы Mathcad и представлены на рисунке 1.

Рисунок 1- Потенциал и волновоя функция ¹¹В+р состояния.

Для связанного состояния ¹¹В+р состояние 1р3/2 является основным и число узлов был расчитан с использованием формулы Тальми-Мощинского[3]:

$$2(N-1) + L = \sum_{i=1}^{n} 2(n_i - 1) + l_i, \tag{1}$$

где n_i , l_i - квантовые числа нуклонов в кластере; L - орбитальный момент кластера.

Таблица 1-Параметры потенциала связывающий протон с кором ¹¹В и значения квантовых чисел для перекрытий, используемых в наших расчетах.

Квантовые числа			Число узлов N	ε-Энергия связи <i>МэВ</i>	V _b МэВ	r _b Фм	а _ь Фм
L	S	J					
1	0.5	1.5	1	15.96	66.6	1.25	0.65

То, что сечение DWBA для обменных процессов сильно зависит от радиуса R_b потенциала, описывающего относительное движение кластера с ядром кором, показано на рисунке 2.

Рисунок 2-Зависимость обменного сечения DWBA от радиуса R_b потенциала, связывающего протонный кластер с кором ¹¹В в ядре ¹²С.

Из рисунка видим, что увеличение радиуса связанного состояния играет важную роль в описании сечении в частности при обратных максимумах сечении. Результаты были получены с использованием программного кода Fresco [4]. Точное определение r_b a_b будут способствовать получению оптимальных результатов DWBA сечении.

Заключение. Основной целью данной работы было получение оптимальных параметров глубины потенциала связанного состояния ¹¹В+р. Используя в качестве г_b и а_b литературные данные была расчитана глубина потенциала V_b связанного состояния. Все эти параметры (V_b, г_b и а_b) нужны для дальнейшего расчета сечении рассеяния в рамках DWBA. При фиксированных параметрах V_b и а_b было показано, что изменение значении радиуса г_b влияет на окончательный результат.

Список использованных источников

- 1. Satchler G.R. Introduction to nuclear reactions. // Palgrave Macmillan, London, 1990. -C. 21-88.
- 2. Jarczyk L. et al. p- 11 B spectroscopic factor from the interference of potential scattering and elastic transfer at low energies //Physical Review C. -1985. T. 31. №1. C.12.
- 3. Buck B. and Pilt A.A. Alpha-particle and triton cluster states in 19F //Nucl. Phys. A., -1977. -T. 280 -C.133.
- 4. Thompson I. J. Getting started with FRESCO// Comput. Phys. Rep., -1988. T. 7. C.167-212.