УДК 517.28

THE CAUCHY TYPE PROBLEM WITH CAPUTO FRACTIONAL q-DERIVATIVE

Absamatova Adiya Dauylovna
adiyashaldybaeva@mail.ru
2nd year undergraduate of L. N. Gumilyov Eurasian National University
Nur-Sultan, Kazakhstan
Supervisor – S. Shaimardan

Our paper is devoted to fractional q-difference equation based on Caputo fractional derivative. We investigated question concerning the solvability of this equation in a certain space of functions.

In this paper, we assume that 0 < q < 1 and $0 \le a < b < \infty$, also some of needed q-notations are given as follows. The q-shifted factorial is defined by

$$(a;q)_n \coloneqq \prod_{i=0}^{n-1} (1-aq^i), n \in \mathbb{N} \ , \ (a;q)_{\infty} \coloneqq \lim_{n \to \infty} (a;q)_n \ \text{ and for } \alpha \in \mathbb{R} \ \text{ define } \ (a;q)_{\alpha} \coloneqq \frac{(a;q)_{\infty}}{(q^{\alpha}a;q)_{\infty}} \ .$$

For more details we refer the reader to the book [1]. The q-gamma function was introduced by Jackson $[2]\Gamma_q(z)=\frac{(q;q)_\infty}{(q^z;q)_\infty}(1-q)^{1-z}$ (0</q/<1) for any z>0; the q-beta function is $B_q(x,y):=\int\limits_0^1t^{x-1}(qt;q)_{y-1}d_qt\quad (x,y>0); \text{ and Askey proved that [3]: } B_q(x,y)=\frac{\Gamma_q(x)\Gamma_q(y)}{\Gamma_q(x+y)}.$

$$D_q f(z) := \frac{f(z) - f(qz)}{z - zq}$$
 for $z \neq 0$

The q-difference operator, which was introduced by Jackson, is defined by [4]:

and the q-integral is

$$\int_{a}^{b} f(t)d_{q}t := \int_{0}^{b} f(t)d_{q}t - \int_{0}^{a} f(t)d_{q}t,$$

where

$$\int_{0}^{b} f(t)d_{q}t := (1-q)\sum_{n=0}^{\infty} bq^{n} f(bq^{n}).$$

The fractional q-integral is

$$I_q^{\alpha} f(x) = \frac{x^{\alpha - 1}}{\Gamma_q(\alpha)} \int_0^x (qt/x; q)_{\alpha - 1} f(t) d_q t \text{ for } \alpha \in \mathbb{R}^+,$$

and the fractional q-derivative is

$$D_{a}^{\alpha} f(x) = D_{a}^{[\alpha]} I_{a}^{\alpha-[\alpha]} f(x) \quad ([\alpha] := \max\{n \in N_0 : \alpha \ge n\}).$$

For $\alpha > 0$, the Caputo fractional q-derivative of order α is defined by

$$^{C}D_{q}^{\alpha}f(x)\coloneqq I_{q}^{n-\alpha}D_{q}^{n}f(x) \qquad (n\coloneqq [\alpha]).$$

For $\gamma \in R$ we define the space

$$C_{\gamma}[a,b] = \left\{ g(x) : x^{\gamma} g(x) \in C[a,b], \|g\|_{C_{\gamma}} := \max_{a \le x \le b} |x^{\gamma} g(x)| \right\}.$$

Let $C_q^n[a,b]$ be the space of all continuous functions with continuous q-derivatives up to order n-1 on the interval [a,b] and has the norm of function

$$||f|| := \sum_{k=0}^{n-1} \max_{a \le x \le b} |D_q^k f(x)|.$$

In our work, we obtain that for $0 < \gamma < 1$ and $g \in C_{\gamma}[0,a]$ holds:

(i)
$$I_q^{\alpha} g \in C_{\gamma}[0,a]$$
 and $\left\|I_q^{\alpha} g\right\|_{C_{\gamma}} \le \frac{a^{\alpha} \Gamma_q(1-\gamma)}{\Gamma_q(\alpha+1-\gamma)} \left\|g\right\|_{C_{\gamma}}$.

(ii) If $\gamma \le \alpha$, then $I_a^{\alpha} g \in C[0, a]$.

Also we showed that for $\alpha > 0$, $n = [\alpha]$, if there exists $\gamma \le \alpha - n + 1$ such that $f \in C_{\gamma}[0, a]$ then $I_q^{\alpha} f \in C_q^n[0, a]$. And we used result of combining the Riemann-Liouville fractional q-derivative and Caputo fractional q-derivative of not necessarily equal orders and identity relation between them, which proved in [5]:

1. Let $\alpha, \beta > 0$ and $n = [\alpha]$, $m = [\beta]$. If $f \in C_{\gamma}[0, a]$ then for all $x \in (0, a]$:

$$I_{q}^{\alpha \ C}D_{q}^{\beta}f(x) = \begin{cases} I_{q}^{\beta-\alpha}f(x) - \sum_{j=0}^{m-1} \frac{D_{q}^{j}f(0^{+})}{\Gamma_{q}(\beta-\alpha+j+1)} x^{\beta-\alpha+j}, & \beta \geq \alpha, \\ D_{q}^{\beta-\alpha}f(x) - \sum_{j=0}^{m-1} \frac{D_{q}^{j}f(0^{+})}{\Gamma_{q}(\beta-\alpha+j+1)} x^{\beta-\alpha+j}, & \beta < \alpha. \end{cases}$$

2. Let $\alpha > 0$ and $n = [\alpha]$. If $f \in C_{\gamma}[0, a]$ and $D_q^n f \in C[0, a]$, then:

$${}^{C}D_{q}^{\alpha}f(x) = D_{q}^{\alpha}\left(f(x) - \sum_{k=0}^{n-1} \frac{D_{q}^{k}f(0^{+})}{\Gamma_{q}(k+1)}x^{k}\right) \quad (x \neq 0)$$

We consider the Cauchy type problem

$$^{C}D_{q}^{\alpha}y(x) = f(x, y(x)) \quad (\alpha > 0),$$
 (1)

$$D_q^m y(0^+) = b_m, \ b_m \in R \ (m = 0, 1, ..., [\alpha] - 1).$$
 (2)

In the following, we prove the existence and uniqueness of the solutions of the Cauchy type problem (1)-(2) in the space $C_q^n[0,a]$.

Theorem. Let $\alpha > 0$, $n = [\alpha]$. Let $G \subset C$ and let $f : (0, a] \times G \to R$ be a function such that $f(x, y) \in C_{\gamma}[0, a]$ for any $y \in G$, $\gamma \leq \alpha - n + 1$. If $y \in C_q^n[0, a]$, then y(x) satisfies (1)-(2) for all $x \in (0, a]$ if and only if y(x) satisfies the q-integral equation

$$y(x) = \sum_{k=0}^{n-1} \frac{b_k}{\Gamma_q(k+1)} x^k + \frac{x^{\alpha-1}}{\Gamma_q(\alpha)} \int_0^x (qt/x; q)_{\alpha-1} f(t, y(t)) d_q t$$

for all $x \in (0, a]$.

References

- 1. G.Gasper, M.Rahman. Basic Hypergeometric Series, 2nd edn. Cambridge university Press, Cambridge. 2004.
- 2. F.H.Jackson. A generalization of the function $\Gamma(n)$ and x^n .Proc. Roy. Soc. Lond. 1904. No.74. P.64-72.
 - 3. R. Askey. The q-gamma and q-beta functions. Appl. Anal. No8(2). 1979. P. 125-141.
- 4. F.H.Jackson. On q-functions and a certain difference operator. Trans. Roy. Soc.Edinb. 1908. No46. P. 64-72,
- 5. M.H. Annaby, Z.S. Mansour. q-fractional calculus and equations. Springer, Heidelberg. 2012.