
Computer Physics Communications 204 (2016) 121–131
Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Fast GPU-based calculations in few-body quantum scattering
V.N. Pomerantsev a,∗, V.I. Kukulin a, O.A. Rubtsova a, S.K. Sakhiev b

a Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Leninskie gory 1(2), Moscow, 119991, Russia
b L.N. Gumilyov Eurasian National University, Astana, 010000, Kazakhstan

a r t i c l e i n f o

Article history:
Received 1 December 2015
Accepted 30 March 2016
Available online 8 April 2016

Keywords:
Quantum scattering theory
Discretization of the continuum
Faddeev equations
GPU

a b s t r a c t

A principally novel approach towards solving the few-particle (many-dimensional) quantum scattering
problems is described. The approach is based on a complete discretization of few-particle continuum
and usage of massively parallel computations of integral kernels for scattering equations by means of
GPU. The discretization for continuous spectrum of few-particle Hamiltonian is realized with a projection
of all scattering operators and wave functions onto the stationary wave-packet basis. Such projection
procedure leads to a replacement of singularmultidimensional integral equationswith linearmatrix ones
having finitematrix elements. Different aspects of the employment ofmultithreadGPU computing for fast
calculation of the matrix kernel of the equation are studied in detail. As a result, the fully realistic three-
body scattering problem above the break-up threshold is solved on an ordinary desktop PC with GPU for
a rather small computational time.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Nowadays there appeared a new possibility to use the Graphics
Processing Units (GPU) for many time-consuming problems. The
efficient employment of GPU can transform an ordinary PC into
a desktop supercomputer. There is no necessity to argue that
such innovation is unmeasurably cheaper and more accessible
for many researchers in the world than the employment of a
modern high-power supercomputer. However, due to the special
GPU architecture the usage of GPU is effective only for those
problemswhere numerical scheme of solution can be realizedwith
a high degree of parallelism. The high effectiveness of the so-called
General Purpose Graphics Processing Unit (GPGPU) computing
has been demonstrated in many areas of quantum chemistry,
molecular dynamics, seismology, etc. (see the detailed description
of different GPU applications in Refs. [1–4]).

Solution of few-body scattering problems, especially above
the three-body breakup threshold, no matter in differential or
integral formalism, is an appropriate candidate for such GPU
implementation because it involves a very large amount of
calculations and therefore requires an extensive use of modern

∗ Corresponding author.
E-mail addresses: pomeran@nucl-th.sinp.msu.ru (V.N. Pomerantsev),

kukulin@nucl-th.sinp.msu.ru (V.I. Kukulin), rubtsova@nucl-th.sinp.msu.ru
(O.A. Rubtsova), ssayabek@yandex.kz (S.K. Sakhiev).

http://dx.doi.org/10.1016/j.cpc.2016.03.018
0010-4655/© 2016 Elsevier B.V. All rights reserved.
computational facilities such as powerful supercomputers. As a
vivid example, we note that one of the most active and successful
groups in the world in this area – the Bochum–Cracow group
guided up to recent time by Prof. W. Glöckle (who passed away
recently) – employed for such few-nucleon calculations the fastest
in Europe supercomputer from JSC in Jülich with the architecture
of Blue Gene [5,6].

Quite recently, new methods for solving Faddeev and Fad-
deev–Yakubovsky few-body scattering equations using (in one
way or another) the bases of square-integrable functions have been
developed [7], which allow to simplify significantly the numerical
solution schemes. Nevertheless, the treatment of realistic three-
and four-body scattering problems still includes a huge numeri-
cal work and, as a result, can be done only by a few groups over
the world that hinders the development of these important stud-
ies. However, according to present authors’ knowledge, GPU com-
puting still has not been used widely for a solution of few-body
scattering problems (we know only two researches based on the
few-body GPU computation but they are dedicated to the ab initio
calculation of bound states [8] and also resonances in the Faddeev-
type formalism [9]).

Moreover, in the case when the colliding particles have
inner structures and can be excited in the scattering process,
i.e. should be treated as composite ones (e.g., the nucleon isobars
or nucleon clusters) the numerical complexity of the problem is
increased additionally, so that without a significant improvement
of the whole numerical scheme the practical solution of such

http://dx.doi.org/10.1016/j.cpc.2016.03.018
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2016.03.018&domain=pdf
mailto:pomeran@nucl-th.sinp.msu.ru
mailto:kukulin@nucl-th.sinp.msu.ru
mailto:rubtsova@nucl-th.sinp.msu.ru
mailto:ssayabek@yandex.kz
http://dx.doi.org/10.1016/j.cpc.2016.03.018

122 V.N. Pomerantsev et al. / Computer Physics Communications 204 (2016) 121–131
multichannel problems becomes to be highly nontrivial even for
a supercomputer. Therefore, the development of new methods in
quantum few-body scattering which can be adapted for highly
parallel realization is of interest nowadays.

Recently we have proposed a novel approach in this area which
includes two main components:

(i) A complete discretization of the continuous spectrum of the
scattering problem, i.e. the replacement of continuous momenta
and energies with their discrete counterparts, by projecting all
the scattering functions and operators onto a space spanned
on the basis of the stationary wave packets [10–13]. As a
result, the integral equations of the scattering theory (like the
Lippmann–Schwinger, Faddeev, etc. equations) are replaced with
their matrix analogs.

(ii) The numerical solution of the resulting matrix equations
with wide usage of the multithread computing on GPU.

The main feature of the above discretization procedure is that
all the constituents in the equations are represented by finite ma-
trices, all the elements of which are calculated independently. So,
this approach is just quite suitable for parallelization and imple-
mentation on GPU. All the necessary details of this discretization
method the reader can find in Refs. [10–13] while the detailed
study of the GPU realization of the approach is done in the present
paper.

Hereweoutline briefly the importance of justmassively parallel
GPU computing for such specific problems when employing
a desktop computer. Let us remind that the Faddeev integral
equations for solving the quantum three-body scattering problem
with realistic interparticle interactions are the coupled two-
dimensional singular integral equations with variable lower and
upper limits in the kernel integrals. These many dozens of coupled
channels when discretizing by means of wave packets result in
hugematrix for kernel, with the dimension ca. 106–107. Such huge
matrix cannot be even stored inRAM. This is a first serious problem.
The second one is the high complexity of calculation for every
matrix element of this huge matrix which includes evaluation
of many thousands double integrals with complicated integrands
combined with numerous sums. So, both these difficulties require
a wide usage of powerful supercomputers.

However, the straightforward GPU implementation for mas-
sively parallel computation of the kernelmatrix cannot be efficient
because numerous exchanges between RAM and global GPUmem-
ory take a lot of time. This slows down all the computations and
cancels all advantages due to parallel GPU realization of algorithm.
So the GPU realization in this case looks to be highly uneasy and
nontrivial. It should be emphasized here that the huge amount of
computation leads to a rather long execution time even for power-
ful supercomputers. Thus the solution of such a problemwith usual
PC for a reasonable time seems completely unreachable.

The present paper reports about the ways to avoid all the
above obstacles and to do really very fast calculation for the
Faddeev equations using a desk computer. We illustrate the
general discretization algorithm for GPU implementation by an
example of calculating the elastic scattering amplitude in three-
nucleon systemwith both simple s-wave and realistic interactions.
Also different aspects related to GPU computing will be studied
here and runtimes for CPU and GPU mode calculations will be
compared.

The paper is organized as follows. The numerical scheme for a
practical solution of the scattering problem in a system of three
identical particles (fermions) in a discretized representation is
described in Section 2. In Section 3 we discuss the properties of
GPU realization for the above problem and test some illustrative
examples while in Section 4 the results for the elastic scattering in
three-nucleon system with realistic NN interaction are presented.
The conclusions are given in Section 5. For the reader’s convenience
we add Appendix with a brief explanation of the wave-packet
continuum discretization technique.

2. Discrete analogue for the Faddeev equation for a system of
three identical particles in the wave-packet representation

2.1. The Faddeev equation for the transition operator

The elastic scattering observables in a system of three identical
particles 1, 2 and 3 can be found from the Faddeev equation for
the transition operator U , e.g. in the following form (the so-called
Alt–Grassberger–Sandhas form):

U = P(G0)
−1

+ Pt1G0U . (1)

Here t1 is the two-particle t-matrix, corresponding to interacting
particles 2 and 3, G0 is the resolvent of the free three-body
HamiltonianH0, and P is the particle permutation operator explicit
form of which depends on the type of particles we study.

After the partial wave expansion in terms of spin–angular
functions, the operator equation (1) for each set of the conserved
three-body quantum numbers Γ (Γ = {J, T , π}, where J is a total
angularmomentum, T is a total isospin andπ is a parity) is reduced
to a system of two-dimensional singular integral equations in
momentum space. As an example, we give the explicit form of
these equations in a form close to the one used in the works of
the Bochum–Cracow group [6]. The transition operator in Eq. (1)
depends explicitly on four momentum variables (p, q) and (p′, q′)

(here p is the momentum of relative motion for pair {23}, q is
the momentum of the third particle 1) and two sets of quantum
numbersα = {l, s, j, t} andβ = {λ, I}where l, s, j, t are the orbital
angular momentum, spin, total angular momentum and isospin of
{23} pair respectivelywhileλ and I are the orbital and total angular
momenta of the third particle. Further we will use the symbol
γ = {Γ , α, β} to denote the complete set of quantum numbers.

The particle permutation operator P in the integral Faddeev
equation (1) is the most difficult challenge for evaluation. In the
three-body plane wave basis {|p, q; γ ⟩} defined for the every set
γ , it can be written, e.g., in following form [6]:

⟨pqγ |P|p′q′γ ′
⟩

=

 1

−1
dx
δ


p′

−


9q2
16 +

p2
4 −

3
4pqx


δ


q′

−


p2 +

q2
4 − pqx


(p′)2(q′)2

× F γ γ
′

(p, q, x), (2)

where δ is the Dirac δ-function, x is the cosine of the angle between
the vectors p and q. The functions F γ γ

′

(p, q, x) are the algebraic
functions of p, q and x:

F γ γ
′

(p, q, x) =


l1,λ1,k

pl2+λ2ql1+λ1Pk(x)g
l1λ1k
γ γ ′

 9
16q

2 +
1
4p

2 −
3
4pqx

 l′
2

p2 +

1
4q

2 − pqx
 λ′

2

,

l1 + l2 = l′,
λ1 + λ2 = λ′,

(3)

where the intermediate indices l1, λ1, l2, λ2 arise from the rotation
of spherical functions and range over all the possible values in
accordance with the triangle rules in algebraic coefficient g l1λ1k

γ γ ′

(see the formulas in [6]).
To find the scattering observables one needs to solve the

following equation for the half-shell elastic amplitude matrix

V.N. Pomerantsev et al. / Computer Physics Communications 204 (2016) 121–131 123
Uγ (p, q) = ⟨p, q; γ |U|φ⟩ where φ is the wave function of initial
state:

Uγ (p, q) = Uγ0 (p, q)+


γ ′γ ′′

 1

−1
dx F γ γ

′

(p, q, x)


p′′2dp′′

×

tα
′α′′

1


9
16q

2 +
1
4p

2 −
3
4pqx, p

′′
; E −

3(p2+ 1
4 q

2
−pqx)

4m


E + iε −

p′′2

m −
3
4m (p

2 +
1
4q

2 − pqx)
Uγ

′′

×


p′′,


p2 +

1
4
q2 − pqx


. (4)

Herem is a particle mass, Uγ0 (p, q) is the driving termwhich we do
not write explicitly and tα

′α′′

1 (p′, p′′
; Z) is the kernel of two-body

t-matrix which depends on the {23} subsystem quantum numbers
α and contains a pole at the bound state energy. The form of Eq. (4)
includes additional integration over value x.

The practical solution of the set of coupled equations like (4) is
complicated and time-consuming task due to special features of
the integral kernel and a large number of coupled spin–angular
channels γ which should be taken into account [6]. One can
see that the Faddeev kernel at the real total energy E has
singularities of two types: two-particle cuts corresponding to
bound states in the two-body subsystems (they arise from two-
body t-matrix t) and the three-body logarithmic singularity arising
at energies above the breakup threshold from denominator of
the kernel in (4). While the regularization of the two-body
singularities is straightforward and does not pose any problems,
the regularization of the three-body singularity requires some
special techniques that greatly hamper the solution procedure. The
practical tricks which allow to avoid such complications are e.g. a
solution of the equation at complex values of energy followed by
analytic continuation to the real axis or a shift for the contour of
integration from the real axis into the plane of complex momenta.

However, themain specific feature of the Faddeev-like kernel is
the presence of the particle permutation operator P , which changes
the momentum variables from one Jacobi set to another one. This
leads to variable limits in integral terms of the Faddeev equations.
In Eq. (4), the variable limits of integration do not appear explicitly
due to introduction the variable x. However, the second argument
q′ of the unknown solutionU is a function of the variables x, p and q
and can take values in finite limits, depending on the values p and q.

When one replaces as usually the integrals with quadrature
sums, all the functions are defined only in quadrature points
and in order to calculate the integral in Eq. (4) the numerous
interpolations of the unknown solution U(p, q) should be done
at every iteration step. This cumbersome interpolation procedure
takes most of the computational time and requires using powerful
supercomputers. The usage of spline-type interpolations and L2-
type techniques helps to overcome this problem in conventional
approaches [7].

The wave-packet discretization method which is used in our
approach allows to circumvent completely the above difficulties
in solving the Faddeev equations (see [10] and the Appendix).

2.2. The matrix analog of the Faddeev equation and its features

The main idea of the wave-packet (WP) approach is discretiza-
tion of spectra for subHamiltonians h0 and h1

0 defining relative free
motion in the subsystem {23} and the free motion of the third
particle 1 respectively. For this purpose, the positive range of mo-
menta p and q are divided into intervals {[pi−1, pi] ≡ Di}

N
i=1 and

{[qj−1, qj] ≡ D̄j}
N̄
j=1 and two-body stationary wave-packets |xi⟩
and |x̄j⟩ are introduced as integrals of exact two-body free mo-
tion wave-functions |p⟩ and |q⟩ over these intervals correspond-
ingly (see Eq. (A.5)). The constructed WP states are L2 normalized
analogs for the exact continuum wave functions and they form a
very convenient basis for the scattering theory calculations (see the
Appendix and Ref. [10]).

The three-body free WP states needed for solving the Faddeev
equation are built as direct products of the respective two-body
WP states |xαi ⟩ and |x̄βj ⟩ with taking into account spin and angular
parts Γ , α, β of the basis functions:

|XΓ αβij ⟩ ≡ |xαi , x̄
β

j ;α, β : Γ ⟩ = |xαi ⟩ ⊗ |x̄βj ⟩|α, β : Γ ⟩,

i = 1, . . . ,N,
j = 1, . . . , N̄. (5)

The state (5) is an L2 analog of the exact plane wave state in three-
body continuum |p, q; γ ⟩ for the three-body free Hamiltonian H0.
The three-body free WP basis functions (5) are constant inside the
rectangular cell Dij of the momentum lattice in (p, q)-space built
as composition of two one-dimensional cells:Dij = Di⊗D̄j. Hence
we refer to the free WP basis as a lattice basis. Using such a basis
one can construct finite-dimensional (discrete) analogs of all the
basic scattering operators.

It is also convenient to introduce the basis for the channel Hamil-
tonian H1 = H0 + v1 = (h0 + v1) ⊕ h1

0 which defines asymp-
totic motion of the {23} subsystem relatively to the third particle
1. The channel WP basis functions are constructed similarly to the
free ones (5) but |xαi ⟩ states should be replacedwith two-body scat-
tering WPs |zαk ⟩ corresponding to two-body subHamiltonian h1 =

h0 + v1 which includes the inner interaction in the {23} subsys-
tem (see Eqs. (A.1) and (A.13)). It has been shown in our previous
works that |zαk ⟩ can be replaced by pseudostates found bymeans of
a diagonalization procedure for the subHamiltonian h1 matrix [10]
on the basis of lattice-type WP |xαi ⟩ (see Eq. (A.9)). In this way, one
gets the basis WP states |ZΓ αβkj ⟩ for the channel Hamiltonian H1 as
a linear combination of the lattice basis states (5) [10]:

|ZΓ αβkj ⟩ =


α′,i

Oαα
′

ki |XΓ α
′β

ij ⟩,
k = 1, . . . ,N,
j = 1, . . . , N̄ (6)

where the rotation matrix O consisting of the elements Oαα
′

ki has
a block form because it affects only the {23}-subsystem indices k
and α. Actually this matrix relates matrix elements of some oper-
ator given on the lattice and channel WP bases.

The constructed channel basis (6) can be used to find the
transition operator U by using the Faddeev equation (1) in a
modified form. Indeed, according to the identity

t1G0 = v1G1, (7)

where G1 ≡ [E + i0 − H1]
−1 is the resolvent of the channel

Hamiltonian H1, one can rewrite Eq. (1) in a half-shell equivalent
form:

U = Pv1 + Pv1G1U . (8)

This form is especially convenient for solution in the representa-
tion of the channel WP states (6) because the three-body channel
resolventG1(E)which enters the kernel of Eq. (8) has only diagonal
matrix elements in the basis (6), i.e.

⟨ZΓ αβkj |G1(E)|Z
Γ α′β ′

k′j′ ⟩ = GΓ αβkj (E)δαα′δββ ′δkk′δjj′ , (9)

and the complex eigenvalues GΓ αβkj (E) are defined by simple
analytical formulas [10,11].

Projecting the integral equation (8) onto the three-body
channel WP basis (6), one gets its matrix analog (for each set of
conserved three-body quantum numbers Γ):

U = PV1 + PV1G1U. (10)

124 V.N. Pomerantsev et al. / Computer Physics Communications 204 (2016) 121–131
Here P, V1 and G1 are the matrices of the permutation operator,
pair interaction and channel resolvent respectively defined in the
channel WP basis. It should be emphasized that all the energy
singularities of Eq. (8) are collected in the resolvent G1. After a
WP projection, these singularities are smoothed out according to
integration over momentum cells, so that, Eq. (10) can be solved
directly at real energies.

As was mentioned above, the channel-resolvent matrix G1
takes a simple diagonal form in the channel WP basis. The matrix
element of the interaction V1 has the block form (the same as for
the rotation matrix O):

⟨ZΓ αβkj |V1|Z
Γ α′β ′

k′j′ ⟩ = ⟨zαk |v1|zα
′

k′ ⟩δββ ′δjj′ , (11)

where matrix element of the interaction ⟨zαk |v1|zα
′

k′ ⟩ is taken in the
subspace corresponding to {23} subsystem (they are related to the
potentialmatrix elements taken in the latticeWPbasis in Eq. (A.8)).

The permutation operator matrix P in the three-body channel
WP basis can be expressed through the matrix P0 of the same
operator in the lattice basis (5) using the rotation matrix O [10]:

P = OP0OT. (12)

Finally, the elements of the permutation matrix P0 in the lattice
basis are evaluated by integrating Eq. (2) over two-dimensional
lattice cells Dij and Di′j′ :

[P0
]
γ ,γ ′

ij,i′j′ =


Dij

pdpqdq


Di′ j′

p′dp′q′dq′
⟨pq, γ |P|p′q′, γ ′

⟩
BijBi′j′

, (13)

where Bij and Bi′j′ are normalization coefficients. Due to an inte-
gration in Eq. (13), the singularities of the permutation operator
kernel get averaged over the cells of the momentum lattice and,
as a result, the elements of the matrix P0 in the WP basis become
finite. The matrix element (13) is reduced to double integral with
variable limits which can be calculated numerically [13]. It is im-
portant to note that due to the energy conservation rule thematrix
P0 is highly sparse.

Thus, all the constituents of Eq. (10) have an explicit form
in the channel WP basis. Below we show how to solve this
equation practically and adapt it to a parallel GPU-realization. As
numerical example we will consider scattering in three-nucleon
(3N) system, particularly, nd elastic scattering in which case we
can compare our numerical solution obtained with GPU with the
benchmark solution found with traditional technique on powerful
supercomputer [6].

2.3. Description of the numerical scheme for solution of Faddeev
equation in WP approach

In the WP approach, we reduced the solution of integral
Faddeev equation (8) to the solution of the very large system of
linear algebraic equation (10) (where number of coupled channels
is defined by possible values of spin–angular quantum numbers γ)
and define the simple procedures and formulas for the calculation
of the kernel matrix K = PV1G1. By this approach, we avoided the
difficulties of solving the integral equation (8),which aremet in the
conventional approach, but the price which should be paid for this
is a high dimension of the resulting system of algebraic equations.
The high dimension is the most serious problem in the practical
solution of the matrix analogue for the Faddeev equation.

In fact, we found [10] that quite satisfactory results can be
obtained with a basis size along one Jacobi momentum N ∼ N̄ ∼

100–150. It means that even in the simplest one-channel case
when all the quantum numbers in the set γ are conserved (e.g. for
spin-quartet s-wave three-fermion scattering or s-wave three-
boson scattering) one gets a kernel matrix with dimension M =
N × N̄ ∼ 10 000–20 000. However, in case of realistic three-body
scattering it is necessary to include many spin–angular channels
(up to 62 channels in the case of three-nucleon system) and thus
the dimension of the kernelmatrix increases up to 5 · 105–106. The
high dimension of the algebraic system leads to the impossibility to
place the whole kernel matrix into RAM of an ordinary PC and the
impossibility to get the numerical solution for a reasonable time,
using a successive CPU execution.

At the first glance, this problem seems to be solved by storing
the whole kernel matrix in the external memory. However when
using it the iterative process becomes very inefficient, since most
of the processing time is spent for reading data from the external
memory, while the processor is idle. Nevertheless the specific
matrix structure of the kernel in Eq. (10) makes it possible to
overcome this difficulty and to eliminate completely the need for
an external memory. Indeed, the matrix kernel K for Eq. (10) can
be written as a product of four matrices, which have the specific
structure:

K = PV1G1 ≡ OP0Ṽ1G1, (14)

where Ṽ1 = OTV1. Here G1 is a diagonal matrix, P0 is a highly
sparse permutation matrix, while Ṽ1 and O are block matrices of
the identical blocks with dimension (N × N) (see Fig. 1).

Thus, if to store in RAM only the individual multipliers of
the matrix kernel K, and to store highly sparse matrix P0 in a
compressed form (i.e. to store only its nonzero elements), all the
data required for the iteration process can still be placed in RAM.
And although in this case three extra matrix multiplications are
added at each iteration step, a computer time spent on iterations
is reduced more than 10 times in comparison with the procedure
employing an external memory.

Thus, our overall numerical scheme consists of the following
main steps:
1. Processing of the input data.
2. Calculation of nonzero elements of the permutation matrix P0.
3. Calculation of the channel resolvent matrix G1.
4. Iterations of the matrix equation (10) and finding its solution by
making use of the Pade-approximant technique.

The step 1 includes the following procedures:
– construction of two-body freeWPbases, and calculatingmatrices
of the interaction potential;
– finding parameters for the three-body channel basis including
matrices of the rotation O between the lattice and scatteringWPs;

– calculating algebraic coefficients g l1λ1k
γ γ ′ from Eq. (3) for the

recoupling between different spin–angular channels.
We found that the runtimes for the steps 1 and 3 are practically

negligible in comparison with the total running time, so that we
shall not discuss these steps here. The execution of the step 4 – the
solution of thematrix system by iterations – takes about 20% of the
total time needed to solve the whole problem in one-thread CPU
computing. Therefore, here we did not optimize this step using the
GPU.

The main computational efforts (in the one-core CPU realiza-
tion) are spent on the step 3, viz. the calculation of the elements
of the matrix P0. Because all of these elements are calculated with
help of the same code and fully independently from each other, the
algorithm seems very suitable for a parallelization and implemen-
tation onmultiprocessor systems like GPU. However, since thema-
trix P0 is highly sparse, it is necessary to use special tricks in order
to reach a high acceleration degree in GPU realization. In partic-
ular, we apply an additional pre-selection of nonzero elements of
the matrix P0.

It should be stressed here that steps 1 and 2 do not depend
on the incident energy. The current energy is taken into account

V.N. Pomerantsev et al. / Computer Physics Communications 204 (2016) 121–131 125
Fig. 1. The structure of matrix kernel (14) for the Faddeev equation (10): nonzero elements are marked by squares.
Fig. 2. (Color online) The p-wave partial phase shifts for the elastic nd scattering
obtained within the WP approach (solid curves) and within the standard Faddeev
calculations (circles) [6].

only at steps 3 and 4 when one calculates the channel resolvent
matrix elements and solves the matrix equation for the scattering
amplitude. Thus when one needs to get scattering observables
in some wide energy region, the whole computing time will not
increase largely because themost time-consuming part of the code
(step 2) is carried out only once for many energy points.

We compared in Fig. 2 results of our calculation on PC
for the case three-nucleon scattering with the conventional
Faddeev calculation of Bochum group [6] who used a high-power
supercomputer Blue Gene. In Fig. 2 the p-wave partial phase shifts
δ
Jπ
Σλ of the elastic nd scattering1 for realistic the Nijmegen I NN
potential [14] are shown.

In the next sectionwe consider the specific features related just
to GPU realization for the above numerical scheme.

3. GPU acceleration in calculation of kernel matrix elements

As was noted above, the calculation of elements of a large
matrix looks very suitable task for effective application of GPU
computing if these elements are calculated independently from
each other and by one code. However, there are a number of
aspects associated with the organization of the data transfer
from RAM to the GPU memory and back and also with the GPU
computation itself which renders the GPU realization in this
case highly nontrivial. These aspects impose severe restrictions
on the resulting acceleration in GPU realization. To measure
an effectiveness of GPU execution let us introduce the GPU-
acceleration degree η as a ratio of runtime for the one-thread CPU
computation to runtime for the multithread GPU computation:

η = tCPU/tGPU. (15)

1 Here J , π andΣ are the total angular momentum, parity and total channel spin
respectively while λ is the neutron orbital momentum.
This acceleration depends on the ratio of the actual time for the
calculation of one matrix element, t0, to the time of transmitting
the result from the GPU memory back to RAM T , on the number
of GPU cores Nc and their speed rGPU as compared to speed of CPU
core rCPU, and also on the dimension of the matrixM:

η = f

t0
T
,Nc, rGPU, rCPU,M


. (16)

Note that the transition itself from a one-thread computing to
multithread computing takes some time, so that anyparallelization
is not effective for matrices with low dimension. When using
the GPU, one has to take into account that the speed of GPU
cores rGPU is usually much smaller than the CPU speed rCPU. Also
for the efficiency of multithread computing it is necessary that
calculations in all the threads are finished at approximately the
same time. Otherwise a part of threads, each of which occupies a
physical core, will be idle for some time. In the case of independent
matrix elements, this condition means that the numerical code for
one element should not depend on its number, in particular, the
code must not contain conditional statements that can change the
amount of computation.

When calculating the permutation matrix P0 in our algorithm,
the above condition is not valid: only about 1% of its non-
vanishing matrix elements should be really calculated using a
double numerical integration, while other 99% of elements are
equal to zero and determination of this fact requires only a few
arithmetic operations. Therefore, when one fills the whole matrix
P0 (including both zero and nonzero elements) 99% of all threads
will be idle, and thus wewill not reach any real acceleration. So we
have to develop at first a numerical scheme to fill effectively sparse
matrices using GPU.

3.1. GPU acceleration in calculating elements of amodel sparsematrix

In this subsection to study GPU acceleration for the calculation
of elements of a matrix with a large dimensionM , we consider two
model examples in which the matrix elements are determined by
the following explicit formulas:
(a) as a sum of trigonometrical functions:

A(i, j) =

K
k=1


sink(uij)+ cosk(wij)


, or (17)

(b) as a sum of numerical integrals:

A(i, j) =

K
k=1

 wij

uij


sink(t)+ cosk(t)


dt. (18)

Here uij and wij are random numbers from the interval [0, 1] and
the parameter K allows to vary the time t0 for calculation of each
element in a wide range. The integrals in Eq. (18) are calculated
numerically by the 48-point Gaussian quadrature. Therefore the
example (b) with numerical integration is closer to our case of
calculating the permutation matrix P0 in the Faddeev kernel.

126 V.N. Pomerantsev et al. / Computer Physics Communications 204 (2016) 121–131
Fig. 3. (Color online) The dependence of GPU acceleration η in calculation of
elements of the densematrix (17) on thematrix dimensionM for different values of
t0: 0.0009ms (solid curve), 0.0094ms (dashed curve), 0.094ms (dot-dashed curve),
0.94 ms (dotted curve).

Fig. 4. (Color online) The dependence of GPU acceleration η in calculation of
elements of the densematrix (18) on thematrix dimensionM for different values of
t0: 0.0017 ms (solid curve), 0.012 ms (dashed curve), 0.114 ms (dot-dashed curve),
1.13 ms (dotted curve).

Fig. 5. (Color online) The dependence of GPU acceleration η in calculation of
elements of dense matrix on the computational time of each matrix element, t0 ,
for different values of matrix dimension M: solid curves correspond to calculation
ofmatrix elements using simple trigonometric functions (17), dashed curve—using
numerical integrals (18).

Figs. 3–5 show the dependence of the GPU acceleration degree
η on the matrix dimension N and the calculation time for each
element t0 when filling up the dense matrices defined by Eqs. (17)
and (18). The GPU calculations were performed using M2 threads,
so that, each thread evaluates only one matrix element.
Fig. 6. (Color online) The dependence of GPU acceleration η in calculation of
elements of sparse matrix with elements (19) on the sparseness parameter α: for
M = 64 (dash-dotted curve),M = 128 (dashed curve) andM = 256 (solid curve).

The calculations are performed on a PC with the processor i7-
3770K (3.50 GHz) and the video card NVIDIA GTX-670. We use the
Portland Group Fortran compiler 12.10 including CUDA support
and CUDA compiler V5.5. As can be seen from the figures, GPU
acceleration rises noticeably with increasing the dimensionM and
the computational time for one matrix element t0. The maximal
acceleration that can be reachedwith our video card for this simple
example is equal to 400–450(!) Such high degree of acceleration
is achieved at the matrix dimension M ∼ 200 and t0 & 0.1 ms.
At further increase of the dimension M , the degree of acceleration
does not change because in this case all the computing resources of
the GPU are already exhausted. Note that the GPU acceleration for
the example (b) with the numerical integration is somewhat lower
than when calculating simple functions. This is due to repeated
use of the some constants (the values of the quadrature points
and weights) which should be stored in the global GPU memory.
It should also be noted that the transition to the double-precision
calculation of the matrix elements reduces greatly the maximal
possible value of GPU acceleration η.

Consider nowwhat efficiency of GPU computing can be reached
in the case of a sparse matrix, when it is actually required to cal-
culate only a small part of matrix elements. We introduce the fol-
lowing additional condition for the matrix elements (17) and (18):

Ã(i, j) =


A(i, j), uij ≤ α
0, uij > α.

(19)

Since uij is a random number in the interval [0, 1], then one gets a
sparsematrix with the degree of sparseness∼ α as a result of such
filtration. In fact, the degree of sparseness is the ratio of number of
non-zero matrix elements to their total numberM2.

Fig. 6 shows the dependence of the GPU acceleration on the
sparseness parameter α in filling up the matrices with dimensions
M = 64, 128 and 256. As can be seen from the figure, the GPU
acceleration is only about 2 (for M = 64) at a value of α ∼ 0.01,
which corresponds to the realistic sparseness parameter for the
permutation matrix P0 in the Faddeev kernel.

Thus, to achieve a significant GPU acceleration in calculating the
permutation matrix P0, it is necessary to add one more step to our
numerical scheme discussed in Section 2.3 and perform an initial
pre-selection of nonzero elements of the permutation matrix.

3.2. The GPU algorithm for calculating the permutation matrix for
one-channel case

Consider now a calculation of the permutation matrix P0

entering the kernel for one-channel Faddeev equation (i.e. without
spin–angular couplings). There are additional limitations for

V.N. Pomerantsev et al. / Computer Physics Communications 204 (2016) 121–131 127
Fig. 7. (Color online) The CPU and GPU computing times (the solid and dashed
curves respectively) for pre-selection of the nonzero elements of one-channel
permutation matrix P0 (triangles) and calculation of these elements (circles)
depending on the matrix dimensionM .

the GPU algorithm for this case compared to simple examples
discussed in the previous subsection.

(a) Themost serious limitations are a high dimension and also a
high sparseness of the permutation matrix, and therefore a special
packaging for this matrix is required. Standard packaging for a
matrix (we use the packaging on the rows — the so called CSR
format) implies, instead of storing the matrix in a single array
A with a dimension M × M , the presence of two linear arrays,
B and C , with dimensions αM2, which store the nonzero matrix
elements of A and the respective numbers of columns. Also the
third linear array W with the dimension M contains addresses
of the last nonzero elements (in the array B), corresponding to a
given row of the initial matrix A. With such a way of the matrix
packaging we get a gain in the memory required for storing the
matrix to be equal to 1/(2α), i.e. about 50-fold gain for a value of
the sparseness 0.01which is specific for the permutationmatrix P0

in theWP representation. So that, at the specific matrix dimension
M ∼ 5 · 105 which is necessary for an accurate calculation of the
realistic 3N scattering problem, the whole matrix would occupy
about 1000 GB of RAM (with single precision), while the same
matrix in a compressed form takes about 20 GB RAM only. This is
a quite acceptable value for a modern desktop computer.

(b) However, the permutationmatrix of such a dimension, even
in the packed form, still cannot be placed in the GPU memory
which is usually 4–8 GB only. Therefore one needs to subdivide the
whole calculation of thismatrix into some blocks using an external
CPU cycle and then employ the multithread GPU computation for
each block.

(c) Another distinction of the calculation of the elements of the
matrix P0 from the simple model example discussed above is the
necessity to use a large number of constants: in particular, the
mesh points and weights for Gaussian quadratures in a calculation
of double integrals and also (in case of a realistic NN interaction
with tensor components) algebraic coefficients g l1λ1k

γ γ ′ from Eq. (3)
for coupling of different spin–angular channels, values of Legendre
polynomials at the nodal points, etc. All these data are stored in the
global GPUmemory and because of the relatively low access rate of
each thread to the global GPUmemory, the resulted acceleration is
noticeably lower than in the case of the above simple code which
does not use a large amount of data from the global GPU memory.

(d) The necessary pre-selection of nonzero elements of the
matrix P0 can be itself quite effectively parallelized with a GPU
implementation. Since the runtime for checking the selection
criteria for each element is on two orders of magnitude less than
the runtime for calculating nonzero element itself, then the degree
of GPU acceleration for the stage of a pre-selection turns out less
than for the basic calculation. Nevertheless, ifwedonot employ the
GPU at this stage, the computing time for it turns out even larger
than theGPU calculation time for all nonzero elements (see below).

After these general observations, we describe the results for the
GPU computing of the most tedious step of solving the Faddeev
equation in the WP approach – the computation of nonzero
elements of the permutation matrix – in a single-channel case.
The results attained for a realistic calculation of multichannel nd
scattering we leave for the next section.

When the pre-selection of nonzero matrix elements is already
done onehas the subsidiary arraysC andW containing information
about all nonzero elements of P0 that should be calculated and
the number of these nonzero elements is Mt . The parallelization
algorithm adopted here assumes that every matrix element is
computed by a separate thread. However, the allowable number
of threads Nthr is restricted by the capacity of the physical GPU
memory and is usually less than the total number of nonzero
elements Mt . In this case, our algorithm consists of the following
steps.

1. The data used in calculation (endpoints of momentum
intervals in variables p and q, nodes and weights of Gauss
quadratures, algebraic coupling coefficients, etc.) are copied to the
GPU memory.

2. Thewhole set of nonzero elements of the permutationmatrix
is divided into Nb blocks with Nthr elements in each block (except
the last one) and the external CPU loop is organized according to
the number of such blocks. Inside the loop the following operations
are performed:

3. A part of the array C corresponding to the current block is
copied to the GPU memory.

4. The CUDA-kernel is launched on GPU in Nthr parallel threads
each of which calculates only one element (in the case of the one-
channel equation) of the permutation matrix.

5. The resulted Nthr nonzero elements of the matrix are copied
from the GPUmemory to the appropriate place of the total array B.

Fig. 7 shows the dependence of the CPU- and GPU-computing
time in calculation of the one-channel (s-wave) permutation
matrix upon its total dimension M = N × N̄ (for N = N̄).
In our case, the GPU code was executed in 65536 threads. For
the comparison, we display in this figure also the CPU and GPU
times which are necessary for a pre-selection of nonzero matrix
elements. It is clear from the figure that one needs to use GPU
computing not only for the calculation of nonzero elements (that
takes most of the time in one-thread CPU computing), but also
for the pre-selection of nonzero matrix elements to achieve a high
degree of the acceleration.

In Fig. 8, we present the degree of GPU acceleration η for
calculating the permutation matrix and also for a complete
solution of one-channel Faddeev equation for the s-wave nd
scattering problem on the matrix dimension M . It is evident that
the runtime for the nonzero elements of the matrix P0 (which
takes the main part of the CPU computing time) is reduced by
more than 100 times. The total GPU acceleration in calculating
the s-wave partial phase shifts reaches 50. As a result of all these
innovations, the total three-body scattering calculation with the
matrix dimensionM = 3802 takes only about 7 sec on an ordinary
PC with GPU.

4. GPU optimization for a realistic 3N scattering problem

4.1. GPU-acceleration for multi-channel Faddeev equations

We now turn to the case of three-nucleon scattering problem
with the realistic Nijmegen NN potential [14].

Unlike the simple one-channel case discussed above, for realis-
tic interactionwehavemany coupled spin–angular channels (up to

128 V.N. Pomerantsev et al. / Computer Physics Communications 204 (2016) 121–131
Fig. 8. (Color online) The dependence of the GPU acceleration degree η on the
matrix dimension M for calculation of the permutation matrix (dashed curve) and
for a complete solution of the nd scattering problem (solid curve) in the case of s-
wave NN interaction.

62 channels if the total angular momentum in NN pair is restricted
as j ≤ 3). In this case, the calculation of each element of the permu-
tation matrix P0 comprises the calculation of several tens of dou-
ble numerical integrals containing the Legendre polynomials. Each
matrix element is equal to the sumof such double integrals and the
sum includes a large set of algebraic coupling coefficients g l1λ1k

γ γ ′ for
the spin–angular channels as in Eq. (3).

Now the GPU-optimized algorithm for the permutation matrix
is somewhat different from the single-channel case: because
each calculated double integral is used to compute several
matrix elements, then each thread now calculates all the matrix
elements corresponding to one pair of momentum cells {Dij,Di′j′}.
These matrix elements belong to different rows of the complete
permutation matrix. So that, after the GPU computing for each
block of the permutation matrix it is necessary to rearrange and
repack (in the single-thread CPU execution) the calculated set of
the matrix elements into the arrays B, C and W , representing
the complete matrix P0 in CSR format. All the above moments
lead to the fact that the GPU acceleration in calculation of the
permutationmatrix in the case of realistic nuclear interaction turns
out significantly lower than for the single-channel case.

Fig. 9 demonstrates the GPU acceleration η versus the basis
dimension M = N × N̄ in the solution of 18-channel Faddeev
equation for the partial three-body elastic amplitude with total
angular momentum J =

1
2

+
(solid curve). The dashed and

dash-dotted curves show the GPU acceleration for stage of pre-
selection of nonzero elements of the permutation matrix P0 and
for calculating of these elements, respectively.

From these results, it is evident that the acceleration degree
when calculating the large coupled-channel permutation matrix is
about 15 that is considerably less in comparison with the above
one-channel case. Nevertheless, the passing from CPU- to GPU-
realization on the same PC allows to obtain a quite impressive
acceleration about 10 in the solution of the 18-channel scattering
problem.

In realistic calculation of the observables for elastic three-
body scattering, it is necessary to include up to 62 spin–orbital
channels. For the current numerical scheme, the efficiency of GPU
optimization decreases with increasing number of channels. As an
illustration of an accuracy of our approach, we present the results
of the complete calculation for realistic elastic nd scattering at
energy 22.7MeV. In Fig. 10we display the differential cross section
in comparison with the results obtained in the conventional
approach [6] using a supercomputer.

The complete calculation, including up to 62 spin–orbital
channels and all states with total angular momentum up to Jmax =
Fig. 9. (Color online) The dependence of the GPU acceleration η on the dimension
of the basisM = N × N̄ (for the case N = N̄) for the realistic nd scattering problem
at J =

1
2

+
: dashed line shows the acceleration for the pre-selection of nonzero

elements in the permutation matrix P0 , dash-dotted line — for the calculation of
these non-zero elements, solid line — the acceleration for the complete solution.

Fig. 10. (Color online) The differential cross section of elastic nd scattering at
energy 22.7 MeV calculated with realistic NN potential inWP formalismwith using
GPU computing (solid curve) in comparisonwith the results of the Bochum–Cracow
group [6] (dashed curve).

Table 1
Runtime (in s) for separate steps of complete solutions of realistic nd scattering
problem.

Step CPU time GPU time

1. Processing input data 30 30
2a. Pre-selection for P0 12 1.9
2b. Calculation of nonzero elements of P0 4558 524
4. Iterations and Pade summation 1253 1250

Total time 5852 1803

17/2 took about 30 min on our desk PC. The runtimes for separate
steps are given in Table 1.

As seen from the table, the time of calculation of the
permutation matrix elements (steps 2a and 2b) is shortened in
ca. 8.7 times due to the GPU optimization. However, for this
multichannel Faddeev calculation the major part of computational
time is now spent not on calculating the permutationmatrix but on
the successive iterations of the very large matrix equation, i.e. on
multiplication of the kernel matrix by a column representing a
current solution. The iteration time takes now about 69% of total
solution time. So that, the total acceleration in this multichannel
case is only 3.2.

It should be stressed however that the current numerical
scheme can be further optimized. Each iteration here includes four
matrix multiplications: one multiplication by a diagonal matrix

V.N. Pomerantsev et al. / Computer Physics Communications 204 (2016) 121–131 129
G1, two multiplications by block matrices O and Ṽ1 and one
multiplication by sparsematrix P0, and amultiplication of a sparse
matrix by a (dense) vector takes most of the time in the iteration
process. It is clear that the algorithm for the iteration can also be
parallelized and implemented on the GPU. In this paper, we did
not aim to solve this task and focused on the GPU optimization
only when calculating the integral kernel of the Faddeev equation.
However, for a multiplication of a sparse matrix to a column there
are standard procedures, including those implemented on GPU.
So that, if to apply the GPU optimization to the iteration step the
runtime of complete solution can be reduced further by 2–3 times.

It is also clear that employment of more powerful specialized
graphics processors like Tesla K80 would lead even to a consider-
ably greater acceleration of the calculations.

4.2. Further development

It looks to be evident that the described GPU approach will be
effective also in the solution of integral equations describing the
scattering in systems of four and a larger number of particles (Fad-
deev–Yakubovsky equations). The main difference between these
more complicated problems and the three-body scattering prob-
lem considered here is an increase in the number of channels to be
included and increase of dimension of integrals defining the ker-
nel matrix elements. As the result, the matrix dimension M and
the computational time of each matrix element t0 will increase.
However, a degree of sparseness for the permutation matrices and
scheme for calculation of kernel matrix elements will remain the
same as in a three-body case. So that, these two factors, i.e. growth
ofM and t0, according to our results, will provide even greater GPU
acceleration than in a three-body case.

However, when the matrix size M will reach a certain limit,
no package will be able to place all nonzero elements in RAM of
a computer. In such a case, another strategy should be chosen:
one divides the channel space into two parts — the major and
minor channels according to their influence on the resulted
amplitude. The minor channels would give only a small correction
contribution to the solution resulting from the subspace of the
major channels. Then, using the convenient projection formalism
(such as the known Feshbach formalism), one can account for
the minor-channel contribution in a matrix kernel defined in
the subspace of the major channels as some additional effective
interaction containing the total resolvent in the minor-channel
subspace. We have shown previously [10,15] that the basis
dimension for theminor channels can be considerably reduced (for
a particular problem, it can be reduced in 10 times [15]) without
loss in an accuracy of a complete solution.

We hope that such a combined approach together with the
multithread GPU computing will lead to the greater progress in
the exact numerical solution of quantum few-body scattering
problems when using a desktop PC.

5. Conclusion

In the present paper we have checked the applicability of the
GPU-computing technique in few-body scattering calculations.
For this purpose we have used the wave-packet continuum
discretization approach in which a continuous spectrum of the
Hamiltonian is approximated by a discrete spectrum of the L2
normalizable wave-packet states. If to project out all the wave
functions and scattering operators onto such a discrete basis
we arrive at simple linear matrix equation with non-singular
matrix elements instead of the complicated multi-dimensional
singular equations in the initial formulation of few-body scattering
problem. Moreover, the matrix elements of all the constituents
of this equation are calculated independently which make the
numerical scheme to be highly parallelized.

The price for this matrix reduction is a high dimension for the
matrix kernel. In the case of fully realistic problem the dimension
of the kernel matrix turns out so high that such a matrix cannot
be placed into RAM of a desktop PC. In addition the calculation
of all kernel matrix elements requires a huge computing time in
sequential one-thread execution. However, we have developed
efficient algorithms of parallelization, which allow to perform
basic calculations in the multithread GPU execution and reach a
noticeable acceleration of calculations.

It is shown that the acceleration obtained due to GPU-
realization depends on the dimension of the basis used and the
complexity of the problem. So, in the one-channel three-body
scattering problem with a semi-realistic s-wave NN interaction,
we obtained as much as 50-fold acceleration for the whole
solution while for a separate part of the numerical scheme (most
time consuming on CPU) the acceleration achieves more than
100 times. In the multi-channel case corresponding to the fully
realistic NN interaction (including up to 62 spin–orbit channels),
the acceleration for the permutation matrix calculation is about
8.7 times. A full calculation of the differential cross section is
accelerated in this case by 3.2 times. However, the numerical
scheme allows a subsequent optimization that will be done in
our further investigations. Nevertheless, the present study has
shown that the implementation of GPU calculations in few-body
scattering problems is very perspective at all and opens new
possibilities for a wide area of researches.

It should be stressed, the developed GPU-accelerated discrete
approach to solution of quantum scattering problems can be
transferred without major changes to other areas of quantum
physics, as well as to a number of important areas of classical
physics involving solution of multidimensional problems for
continuous media studies.

Acknowledgments

This work has been supported partially by Deutsche
Forschungsgemeinschaft, grant MU 705/10-1 and the Russian
Foundation for Basic Research, Grant No. 16-52-12005.

Appendix. Continuum discretization with stationary wave-
packets in few-body scattering problems

Here for the reader’s convenience, we outline briefly the
method of stationary wave packets. For all details we refer to our
previous original papers [11,13] and the recent review [10].

The stationary wave packets (WPs) are introduced for some
two-body Hamiltonian h = h0 + v as integrals of exact
scatteringwave functions |ψp⟩ (normalized to Dirac delta-function
on momentum p) over some momentum intervals {∆i ≡

[pi−1, pi]}Ni=1:

|zk⟩ =
1

√
Ck


∆k

w(p)|ψp⟩dp, Ck =


∆k

|w(p)|2dp. (A.1)

Here p =
√
2µE is relative momenta, µ is the reduced mass of

the system, w(p) is a weight function and Ck is the corresponding
normalization factor.

The WP states built in this way have a finite normalization as
bound states. The set of WP functions together with the possible
bound-state wave functions {|zbn⟩}

Nb
n=1 of the Hamiltonian h form

an orthonormal set and can be employed as a basis similarly to any
other L2 basis functions, which are used to project wave functions
and operators [10].

130 V.N. Pomerantsev et al. / Computer Physics Communications 204 (2016) 121–131
The matrix of Hamiltonian h is diagonal in such aWP basis. The
resolvent g(E) = [E + i0 − h]−1 for Hamiltonian h has also a
diagonal representation in the subspace spanned on the WP basis:

g(E) ≈

Nb
n=1

|zn⟩⟨zn|
E − ϵ∗

n
+

N
k=Nb+1

|zk⟩gk(E)⟨zk|, (A.2)

where ϵ∗
n are the bound-state energies and gk(E) are eigenvalues

corresponding to discretized continuum which can be expressed
by explicit formulas [10], e.g. for the unit weightw(p) = 1:

gk(E) =
µ

pdk


ln
p0 − pk−1

p0 − pk

+ ln
 p0 + pk
p0 + pk−1


− iπθ(p0 ∈ ∆k)


. (A.3)

Here p0 =
√
2µE is the on-shell momentum, dk = pk − pk−1 is

the width of the momentum interval and θ is the Heaviside-type
function defined by the conditions:

θ(p0 ∈ ∆k) =


1, p0 ∈ ∆k,
0, p0 ∉ ∆k.

(A.4)

Thus, all the eigenvalues gk(E) are real, except for the single gk∗(E)
corresponding to the interval to which the on-shell momentum
value belongs: p0 ∈ ∆k∗.

The useful particular case of stationary wave packets is freeWP
states which are defined for the free-motion Hamiltonian h0. As
in the general case, the continuum of h0 (in every spin–angular
channel α) is divided into non-overlapping intervals {Di ≡

[Ei−1, Ei]}
N
i=1 and two-body free wave-packets are introduced as

integrals of exact free-motionwave functions |p⟩ (an indexαwhich
marks possible quantum numbers wewill omit where is possible):

In particular case of free Hamiltonian h0 the free WP states are
defined as follows:

|xi⟩ =
1

√
Bi


Di

f (p)|p⟩dp, Bi =


Di

|f (p)|2dp, (A.5)

where Bi and f (p) are the normalization factor andweight function
respectively.

In such a basis, the free Hamiltonian h0 has a diagonal finite-
dimensional representation as well as the free resolvent g0 =

[E + i0 − h0]
−1:

g0(E) ≈

N
i=1

|xi⟩gi(E)⟨xi|, (A.6)

where eigenvalues gi(E) are defined by Eq. (A.3) (see Ref. [10]). In
momentum representation, the states (A.5) take the form of step-
like functions:

⟨p|xi⟩ =
f (p)θ(p ∈ Di)

√
Bi

. (A.7)

In practical calculations, we usually used the free WP with unit
weights f (q) = 1. The functions of such states are constant
inside the chosen momentum intervals. In few-body and multidi-
mensional cases, the WP basis functions are constructed as prod-
ucts of two-body ones, so that the model space can be considered
as a multidimensional lattice.

The matrix elements of the interaction potential in the free
WP representation can be easily calculated using the original
momentum representation v(p, p′) for the potential:

vii′ =
1

√
BiBi′


Di


Di′

dpdp′f ∗(p)v(p, p′)f (p′). (A.8)
Moreover, in some rough approximation the potential matrix
elements can be found simply as vi,i′ ≈

√
BiBi′v(p∗

i , p
∗

i′), where
p∗

i and p∗

i′ are the middle values of momenta over the intervals
Di and Di′ respectively. Further, we will use the above free WP
representation for solution of scattering problems.

It was shown [10], that the scattering WPs (A.1) for some
total Hamiltonian h can be also approximated in the free WP
representation. There is no necessity to find the exact scattering
wave functions |ψp⟩ in that case. Instead, it is just sufficient to
diagonalize the total Hamiltonian matrix in the basis of free WPs.
As a result of such direct diagonalization one gets the approximate
scatteringWPs (and also the functions of bound states if they exist)
for Hamiltonian h in the form of expansion into free WP basis:

|zk⟩ ≈

N
i=1

Oki|xi⟩, (A.9)

where Oki are the matrix elements for rotation from one basis
to another. Note that it is not required that the potential v
is a short-range one. So that, the same procedure allows to
construct wave packets for Hamiltonian including the long-range
Coulomb interaction and to get an analytical finite-dimensional
representation for the Coulomb resolvent [10].

The Lippmann–Schwinger equation for the transition operator
t(E) in momentum representation (for every partial wave l):

tl(p, p′
; E) = vl(p, p′)+

1
4π


∞

0
dp′′

vl(p, p′′)tl(p′′, p′
; E)

E + i0 −
(p′′)2

2m

(A.10)

can be solved in WP representation by projecting equation (A.10)
onto freeWP basis, the integral equation being reduced to amatrix
equation inwhich all the operators are replacedwith theirmatrices
in the WP basis:

tkii′ = vii′ +

N
j=1

vij[g0]kj t
k
ji′ , E ∈ Dk (A.11)

where vij are thematrix elements of the interaction operatorwhich
are defined by Eq. (A.8). Then the solution of Eq. (A.11) takes the
form of histogram representation for the off-shell t-matrix from
Eq. (A.10)

tl(p, p′
; E) ≈

tkii′
√
DiDi′

,

p ∈ Di,
p′

∈ Di′ ,
E ∈ Dk,

(A.12)

where Di and Di′ are the widths of energy intervals.
The method of continuum discretization described above is

directly generalized to the case of three- and few-body system (see
the details in Refs. [11,13]). The three-body wave-packets for the
channel Hamiltonian H1 = h1 ⊕ h1

0 are defined just as products
of two types of wave-packet states for h1 and h1

0 subHamiltonians
whose spin–angular parts |α⟩ and |β⟩ are combined to the
respective three-body states having quantum numbers Γ :

|ZΓ αβkj ⟩ ≡ |zαk , x̄
β

j , α, β : Γ ⟩,
k = 1, . . . ,N,
j = 1, . . . , N̄. (A.13)

The on-shell elastic amplitude in the WP representation is defined
now via the diagonal matrix element of the U-matrix (10) (see
details in Ref. [10]):

AΓ α0βel (q0) ≈
2m
3q0

[U]
Γ α0β,α0β
1j0,1j0

d̄j0
, (A.14)

wherem is the particle mass, q0 is the initial two-bodymomentum
and the matrix element is taken between the channel WP states
|ZΓ α0β1j0

⟩ = |zα01 , x̄
λ
j0
;α0, β : Γ ⟩ corresponding to the initial and

final scattering states. Here |zα01 ⟩ is the bound state of the pair, the
index j0 denotes the bin D̄j0 including the on-shell momentum q0
and d̄j0 is a momentum width of this bin.

V.N. Pomerantsev et al. / Computer Physics Communications 204 (2016) 121–131 131
References

[1] B. Block, P. Virnau, T. Preis, Comput. Phys. Comm. 181 (2010) 1549.
[2] M.A. Clark, R. Babich, K. Barrose, R.C. Brower, C. Rebbi, Comput. Phys. Comm.

181 (2010) 1517.
[3] K.A. Wilkinson, P. Sherwood, M.F. Guest, K.J. Naidoo, J. Comput. Chem. 32

(2011) 2313.
[4] https://developer.nvidia.com/cuda-zone.
[5] H. Witała, W. Glöckle, Phys. Rev. C 85 (2012) 064003.
[6] W. Glöckle, H. Witała, D. Hüber, H. Kamada, J. Golack, Phys. Rep. 274 (1996)

107.
[7] J. Carbonell, A. Deltuva, A.C. Fonseca, R. Lazauskas, Prog. Part. Nucl. Phys. 74

(2014) 55.
[8] H. Potter, et al., in: A.M. Shirokov, A.I. Mazur (Eds.), Proceedings of NTSE-
2013, Ames, IA, USA, May 13–17, 2013, Khabarovsk, Russia, 2014, p. 263.
http://www.ntse-2013.khb.ru/Proc/Sosonkina.pdf.

[9] E. Yarevsky, in: A. Gheorghe, J. Buša, M. Hnatic (Eds.), Mathematical Modeling
and Computational Science, in: LNCS, vol. 7125, 2012, p. 290.

[10] O.A. Rubtsova, V.I. Kukulin, V.N. Pomerantsev, Ann. Phys. 360 (2015) 613.
[11] O.A. Rubtsova, V.N. Pomerantsev, V.I. Kukulin, A. Faessler, Phys. Rev. C 86

(2012) 034004.
[12] S.A. Kelvich, V.I. Kukulin, O.A. Rubtsova, Phys. At. 77 (2014) 438.
[13] V.N. Pomerantsev, V.I. Kukulin, O.A. Rubtsova, Phys. Rev. C 89 (2014) 064008.
[14] V.G.J. Stoks, R.A.M. Klomp, C.P.F. Terheggen, J.J de Swart, Phys. Rev. C 49 (1994)

2950.
[15] O.A. Rubtsova, V.I. Kukulin, Phys. At. Nuclei 70 (2007) 2025.

http://refhub.elsevier.com/S0010-4655(16)30076-5/sbref1
http://refhub.elsevier.com/S0010-4655(16)30076-5/sbref2
http://refhub.elsevier.com/S0010-4655(16)30076-5/sbref3
https://developer.nvidia.com/cuda-zone
http://refhub.elsevier.com/S0010-4655(16)30076-5/sbref5
http://refhub.elsevier.com/S0010-4655(16)30076-5/sbref6
http://refhub.elsevier.com/S0010-4655(16)30076-5/sbref7
http://www.ntse-2013.khb.ru/Proc/Sosonkina.pdf
http://refhub.elsevier.com/S0010-4655(16)30076-5/sbref9
http://refhub.elsevier.com/S0010-4655(16)30076-5/sbref10
http://refhub.elsevier.com/S0010-4655(16)30076-5/sbref11
http://refhub.elsevier.com/S0010-4655(16)30076-5/sbref12
http://refhub.elsevier.com/S0010-4655(16)30076-5/sbref13
http://refhub.elsevier.com/S0010-4655(16)30076-5/sbref14
http://refhub.elsevier.com/S0010-4655(16)30076-5/sbref15

	Fast GPU-based calculations in few-body quantum scattering
	Introduction
	Discrete analogue for the Faddeev equation for a system of three identical particles in the wave-packet representation
	The Faddeev equation for the transition operator
	The matrix analog of the Faddeev equation and its features
	Description of the numerical scheme for solution of Faddeev equation in WP approach

	GPU acceleration in calculation of kernel matrix elements
	GPU acceleration in calculating elements of a model sparse matrix
	The GPU algorithm for calculating the permutation matrix for one-channel case

	GPU optimization for a realistic 3 N scattering problem
	GPU-acceleration for multi-channel Faddeev equations
	Further development

	Conclusion
	Acknowledgments
	Continuum discretization with stationary wave-packets in few-body scattering problems
	References

