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Abstract

A unified description of early-time inflation with the current cosmic acceleration is achieved by means 
of a new theory that uses a quadratic model of gravity, with the inclusion of an exponential F(R)-gravity 
contribution for dark energy. High-curvature corrections of the theory come from higher-derivative quantum 
gravity and yield an effective action that goes beyond the one-loop approximation. It is shown that, in this 
theory, viable inflation emerges in a natural way, leading to a spectral index and tensor-to-scalar ratio that are 
in perfect agreement with the most reliable Planck results. At low energy, late-time accelerated expansion 
takes place. As exponential gravity, for dark energy, must be stabilized during the matter and radiation eras, 
we introduce a curing term in order to avoid nonphysical singularities in the effective equation of state 
parameter. The results of our analysis are confirmed by accurate numerical simulations, which show that 
our model does fit the most recent cosmological data for dark energy very precisely.
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1. Introduction

It is well accepted nowadays that the Universe underwent a period of strong and extremely 
quick accelerated expansion, namely the inflation stage, immediately after its origin (usually 
termed as the Big Bang singularity). From the very first proposal of the inflationary paradigm 
in 1981, by Guth [1] and Sato [2], several attempts to describe this early-time acceleration have 
been carried out (see Refs. [3], for some reviews).

Moreover, cosmological data [4] clearly show that the Universe is experiencing now a new 
phase of accelerated expansion, which can be explained either in terms of the existence of a dark 
energy fluid [5–7] or by modifying Einstein’s gravity. In this respect, one of the most popular 
classes of modified gravity theories is F(R)-gravity. Here, the gravitational action is given by 
a function of the Ricci scalar only (for a review, see Refs. [8]). Many authors have investigated 
F(R)-gravity as an alternative for dark energy and its properties, showing that theories of this 
class are able to fulfill the constrains imposed by local and cosmological tests [8,9]. In partic-
ular, exponential models of modified gravity as sound alternatives to dark energy have become 
quite popular in the last decade, since they represent a simple and natural way to mimic the 
cosmological constant term of the standard �CDM model at large curvature [10–15].

As first suggested in Ref. [16], it may be interesting and natural—e.g., as the first step to-
wards the construction of a more fundamental theory—to try to unify the early-time and late-time 
cosmological accelerations in one single model. In this respect, it is worth noting that, at high 
curvature, when early-time inflation occurs, quantum gravity effects have to be incorporated to 
the theory. Starting from this crucial observation, we would like to present here high-curvature 
corrections to General Relativity (GR) under the form of a higher-derivative quantum gravity 
model [17]. We thus enter the domain of quantum field theory, where basic renormalization 
group (RG) considerations lead to a RG improvement of the effective action. Indeed, this tech-
nique has been successfully developed in quantum field theory in curved space–time [18] and 
permits to construct an effective action which goes beyond the one-loop approximation, because 
it renders it possible to sum over all leading log-terms of the theory. Since we are here interested 
in the Friedmann–Robertson–Walker (FRW) space–time solutions, we will be finally led to work 
with a higher-derivative multiplicatively renormalizable quantum gravity theory [19,20] through 
the use of RG-improved techniques. A model of this kind was first discussed in Ref. [22] and 
subsequently extended to the case of R2 with quantum electrodynamics in Ref. [23]. Here, we 
further extend the formulation in order to go beyond these results and obtain a unified description 
of a viable inflationary scenario with the Friedmann and dark energy Universe stages. To repro-
duce the dark energy sector we make use of an exponential model of F(R)-modified gravity, 
including an additional term to stabilize the theory during the radiation and the matter eras. Our 
approach is phenomenological and we add the dark energy F(R) function as an extra term. Of 
course, in doing so we need to comply with several restricting conditions. First of all, we choose 
the exponential form of F(R) so that it would be qualitatively similar to the RG improved ef-
fective action under discussion. Second, its choice is done in such a way that the inflationary 
universe scenario which follows from our RG improved effective action is not modified by the 
dark energy F(R)-term, which gives a non-essential impact to inflation. Third, our purpose is 
to formulate the unified description of the early-time inflation with dark energy. For that reason, 
our exponential F(R)-term is chosen so that it cancels some singularities (the past-time oscilla-
tions) of the whole theory. The addition of this term to the quadratic action makes the theory to 
be non-renormalizable. In this sense, our complete action is a classical modified gravity theory 
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where some terms relevant for early-time inflation are inspired by quantum gravity considera-
tions, while the exponential F(R)-term is chosen so that it is negligible at the inflationary epoch.

The paper is organized as follows. In Section 2 we discuss our model of a RG-improved effec-
tive action for higher-derivative renormalizable quantum gravity. The equations for the running 
coupling constants in front of the gravitational invariants are obtained, and explicit forms for 
these running coupling constants are derived. Section 3 is devoted to the application of high-
derivative quantum gravity to inflation. The field equations for FRW space–time are presented 
and the quasi-de Sitter (dS) solution describing the early-time acceleration is found. Furthermore, 
we show that this solution is unstable and that the model has a graceful exit from inflation, lead-
ing moreover to an amount of inflation (number of e-folds) that is large enough in order to get the 
necessary thermalization of the observable Universe. In Section 4 we derive the spectral index 
and the tensor-to-scalar ratio for cosmological perturbations. We show that these parameters are 
in agreement with the most recent analysis of the Planck satellite data. At the end of inflation, 
the model can be recast under the form of an R2-correction to General Relativity, with a reheat-
ing mechanism able to convert the energy of inflation into the one corresponding to standard 
matter and radiation. In Section 5 we introduce exponentially modified gravity for dark energy. 
We recover the de Sitter solution for the current cosmic acceleration, and show that this solution 
is a final attractor of the system. Modified gravity for dark energy needs a mechanism to avoid 
singularities during the radiation and matter eras, that is why in Section 6 we device a suitable 
logarithmic correction which stabilizes the theory at large curvature. In Section 7, we provide a 
numerical simulation of the late-time acceleration occurring in our model. We should remark that 
the whole gravitational Lagrangian of the theory is here considered, which shows that the high-
curvature corrections for inflation do not affect the dynamics of our model at late times. Actually, 
this model proves to be stable and to fit remarkably well the dark energy parameters coming from 
the latest analysis of Planck’s data. Conclusions and final remarks are given in Section 8.

2. RG-improved effective action for higher-derivative quantum gravity

It is well-known that the Hilbert–Einstein action which classically describes the gravitational 
field gives rise to a non-renormalizable theory since, at high energy, the strong interaction is af-
fected by divergences that cannot be canceled by a finite number of counter terms. This means 
that some ultraviolet completion is necessary at high energy scales. In this context, the develop-
ment of a renormalizable quantum gravity theory is extremely interesting and can be also very 
useful in other areas of field theory. To wit, gravitation functions may act as a cut-off for interac-
tions in elementary particle theory and it should be mentioned that a number of speculations are 
open in that sense.

For the pure gravitational action, renormalizability can be achieved by using quadratic terms 
on the Ricci scalar and Ricci tensor [17,19,20,24], but the resulting theory is not ghost free 
and in the end some extension (eventually, non-local) is required [25]. The ghost problem in 
higher-derivative gravity is not solved so far but there are some hopes that it may be solved in 
the non-perturbative approach. We do not go here into the discussion of this problem because, 
as we have explained in the introduction, we will consider the effective gravity theory which is 
not renormalizable due to the presence of the dark energy F(R)-term added to the action, so 
that in this sense this is just classical modified gravity. Furthermore, effectively the Friedmann 
equations of our complete theory are just the same as for the corresponding ghost-free F(R)

gravity obtained from our theory by dropping the Weyl-squared term, which does not give any 
contribution to the equations of motion, so that background evolution in the two theories is just 
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the same. Nevertheless, as we explain later on, the Weyl-squared term may be indeed relevant in 
the study of cosmological perturbations.

In this paper we will use the approach of Ref. [17] (see also the references therein), where, by 
starting from quadratic higher-derivative gravity, it is possible to obtain a renormalizable model 
by computing the one-loop divergences of the theory.

Quadratic higher-derivative gravity models are quite interesting, since they represent a modi-
fication of Einstein’s gravity at high curvature, where the phenomenology of early-time inflation 
can be strictly connected with them. The very general action of this theory is given by,

I =
∫
M

d4x
√−g

(
R

κ2
0

− �̃ + aR2 + bRμνR
μν + cRμνξσ Rμνξσ + d�R

)
, (2.1)

where g is the determinant of the metric tensor gμν , M is the space–time manifold, and � ≡ gμν∇μ∇ν the covariant d’Alembertian, ∇μ being the covariant derivative operator asso-
ciated with the metric gμν . The Hilbert–Einstein action is given by the Ricci scalar R, while 
R2 , RμνR

μν , Rμνξσ Rμνξσ and �R are the higher curvature corrections to GR, Rμν and Rμνξσ

being the Ricci and the Riemann tensors, respectively. Here, 0 < κ2
0 encodes the mass scale of the 

theory and a, b, c, d are constant parameters. Finally, �̃ is a cosmological constant term, which 
should not be confused with the cosmological constant � for dark energy. If we here introduce 
the Gauss–Bonnet four-dimensional topological invariant, G, and the square of the Weyl tensor, 
C2 ,

G = R2 − 4RμνR
μν + Rμνξσ Rμνσξ , C2 = 1

3
R2 − 2RμνR

μν + RξσμνR
ξσμν , (2.2)

we can write

RμνR
μν = C2

2
− G

2
+ R2

3
, Rμνξσ Rμνξσ = 2C2 − G + R2

3
. (2.3)

As the Gauss–Bonnet and the surface term �R do not contribute to the dynamical field equations 
of the model, we can drop them down from the action, which will result in terms of R/κ2

0 , �̃, R2

and C2 only.
Using the results of the one-loop calculations in the above theory, we can now proceed with it 

RG improvement, in analogy with RG-improved calculations carried out in quantum field theory 
in curved space–time [18,21]. In this way (see, also, Ref. [22]), we obtain a RG-improved action 
for higher-derivative quantum gravity, which reads

I =
∫
M

d4√−g

[
R

κ2(t ′)
− �̃(t ′) − ω(t ′)

3λ(t ′)
R2 + 1

λ(t ′)
C2 + fDE(R) +Lm

]
. (2.4)

Note that here, to the RG-improved action we have added Lm, which is the Lagrangian cor-
responding to standard matter, and the function of the Ricci scalar fDE(R), which has been 
introduced by hand to support the late-time cosmic acceleration. The precise role of this term will 
be discussed in Section 5. In this way we unify in a single model the higher curvature corrections, 
which account for quantum gravity effects for inflation, with a phenomenological F(R)-gravity 
for the dark energy era. Notice also that QG corrections in Lm can be safely neglected, since 
inflation is assumed to occur owing to the presence of purely gravitational terms.

The running coupling constants κ2 ≡ κ2(t ′), �̃ ≡ �̃(t ′), λ ≡ λ(t ′) and ω ≡ ω(t ′) are obtained 
from one-loop quantum gravity corrections and, thus, we deal with a renormalization-group-
improved effective action from multiplicatively-renormalizable quantum gravity. This kind of 
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Lagrangian has been investigated in several papers [18,21]. In its simplest formulation [18], the 
RG-improved effective action follows from the solution of the RG equation applied to the com-
plete effective action of the multiplicatively renormalizable theory. As a final result, the one-loop 
coupling constants are expressed in terms of the log term of a characteristic mass scale in the 
theory, namely

t ′ = t ′0
2

log

[
R

R0

]2

, 0 < t ′0 , (2.5)

where t ′0 is a positive number and R0 is the curvature at which the quantum gravity effects 
disappear. The running coupling constants for the gravitational action (2.4) obey the one-loop 
RG equations [17,20],

dλ

dt ′
= −β2λ

2 ,
dω

dt ′
= −λ(ωβ2 + β3) ,

dκ2

dt ′
= κ2γ ,

d�̃

dt ′
= β4(

κ2
)2

− 2γ �̃ , (2.6)

and are closely connected with the β-functions β2,3,4 and γ , namely

β2 = 133

10
, β3 = 10

3
ω2 + 5ω + 5

12
,

β4 = λ2

2

(
5 + 1

4ω2

)
+ λ

3
κ4�̃

(
20ω + 15 − 1

2ω

)
, γ = λ

(
10

3
ω − 13

6
− 1

4ω

)
. (2.7)

We observe that the renormalization procedure does not allow us to set �̃ = 0. We also should 
note that, when the coefficients in the action (2.1) are not constant, the Gauss–Bonnet and the �R-term contribute to the dynamics of the model, resulting into additional RG equations. As 
stated before, in this work we will use the simplest renormalized theory of Ref. [17] with R2

and Weyl corrections only, but in the next chapter we will offer a detailed comparison with the 
extended model in FRW space–time.

The following important remark is in order. In spite of the fact that matter fields are quickly 
shifted away during the early-time accelerated expansion, their presence may slightly affect the 
behavior of the running coupling constants in (2.6) and (2.7). Note that matter is normally chosen 
so that the corresponding higher-derivative gravity model with matter is still a multiplicatively-
renormalizable theory. In Ref. [23], a scalar electrodynamics (where scalars are non-minimal 
ones, in order to achieve the desired renormalizability) with 4d higher-derivative gravity has been 
analyzed, in the framework of quadratic gravity, by taking into account the whole form of the 
quantum corrections, including matter. The matter coupling with gravity leads to two changes: 
an effective field potential in the Lagrangian (which is not the case under consideration, because 
we study only the background metric to be non-zero but not the scalar field, what effectively 
means that the contribution of R is bigger than that of φ2) and the additional terms in the beta 
functions (2.7). The matter corrections to the RG equations can be ignored, as curvature terms are 
dominant. Indeed, we have checked that the matter contribution leads to non-essential numerical 
changes in the corresponding beta-functions, so that qualitatively the ensuing inflation remains to 
be effectively the same. In other words, the matter Lagrangian may change slightly the running 
couplings in (2.6) and (2.7), but it leads to negligible corrections in the spectral index and in the 
tensor-to-scalar ratio of the model. For these reasons, assuming the standard model for the matter 
Lagrangian, we can use the results in (2.6) and (2.7). We have explicitly checked that, taking into 
account matter contributions (scalar self-interacting theory and/or scalar electrodynamics) in the 
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RG improved effective action (2.4) does not lead to any qualitative changes in the results of this 
paper.

From the first equation in (2.6), we immediately get:

λ(t ′) = λ(0)

1 + λ(0)β2t ′
, 0 < λ(0) , (2.8)

where λ(0) is a positive integration constant, corresponding to the value of λ(t ′) at t ′ = 0, namely 
R = R0 in (2.5).

The equation for ω exhibits two fixed points, namely ω1 � −0.02 and ω2 � −5.47, but only 
the first of them is stable, being an attractor of the system for large values of t ′, namely when 
R0 � R [20]. We can easily demonstrate this extreme by considering the behavior of ω(t ′) =
ω1,2 + δω(t ′), |δω(t ′)/ω1,2| � 1, around the fixed points, namely

dω(t ′)
dt ′

� −λ(t ′)
(

20

3
ω + 183

10

)
|ω1,2δω(t ′)

− λ(t ′)2β2

(
dt ′

dω(t ′)

)(
10

3
ω2 + 183

10
ω + 5

12

)
|ω1,2δω(t ′)

= −λ(t ′)
(

20

3
ω + 158

5

)
|ω1,2δω(t ′) , (2.9)

which leads to

ω(t ′) = ω1,2 + c0

(1 + λ(0)β2t ′)q
, q = 1

β2

(
20

3
ω + 158

5

)
|ω1,2 , (2.10)

where |c0| � 1 is a constant and we have used (2.8). Thus, the solution is stable at t ′ → ∞ for 
ω1 with q � 2.37, while for ω2 with q � −0.37 it diverges. This means that, for large values of 
t ′, the function ω(t ′) tends to the attractor at ω = ω1. By taking into account that 0 < dω(t ′)/dt ′, 
when 0 < λ(0) and ω2 < ω < ω1, the function ω(t ′) grows up with t ′ and approaches ω1, as

ω(t ′) = ω1 + c0

(1 + λ(0)β2t ′)p
, p =

(
10

3

)
(ω1 − ω2)

β2
� 1.36 , (2.11)

where we have taken the average value of ω between ω1 and ω2. In this paper we will set c0 = 0, 
so that

ω(t ′) = ω1 = −0.02 . (2.12)

Note that the term R2 gives a positive contribution inside the gravitational action and helps to 
avoid finite-time future singularities at large curvature.

Now, it is possible to get the form of κ2 from the third equation in (2.6),

κ2(t ′) = κ2
0 (1 + λ(0)β2t

′)Z/β2 , Z =
(

10

3
ω1 − 13

6
− 1

4ω1

)
= 10.27 , (2.13)

where κ2
0 = κ2(0) corresponds to the mass scale of the theory at small curvature, namely the 

Planck mass M2
Pl,

κ2
0 = 16π

M2
Pl

, M2
Pl = 1.2 × 1028eV . (2.14)

Finally, we derive the form of �̃ from the last equation in (2.6), which reads
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d(κ4�̃)

dt ′
= β4 ≡ λ(t ′)2

2

(
5 + 1

4ω(t ′)2

)
+ λ(t ′)

(
κ4(t ′)�̃(t ′)

)(
20

3
ω(t ′) + 5 − 1

6ω(t ′)

)
.

(2.15)

When ω = ω1 is constant, this equation can be solved with respect to the dimensionless function 
κ4�̃, and leads to

κ4�̃ = − 3λ(0)(1 + 20ω2
1)

4ω1(1 + λ(0)β2t ′)(−1 + 30ω1 + 6β2ω1 + 40ω2
1)

+ κ4
0 �̃0(1 + λ(0)β2t

′)W/β2 ,

W = 20

3
ω1 + 5 − 1

6ω1
= 13.2 , (2.16)

where we have used (2.8). Since we would like to completely avoid the quantum induced effects 
at small curvature, we require that �̃ = 0 when t ′ = 0, by fixing the integration constant �̃0 as

�̃0 = 3λ(0)

κ4
0

(
(1 + 20ω2

1)

4ω1(−1 + 30ω1 + 6β2ω1 + 40ω2
1)

)
� −11 × λ(0)

κ4
0

. (2.17)

On the other hand, due to the fact that 0 < W , at large curvature

�̃ � �̃0

(1 + λ(0)β2t ′)X/β2
� �̃0

(1 + λ(0)β2t ′)0.55
, X = (2Z − W) � 7.34 , (2.18)

and the cosmological constant from the RG improved effective action tends to decrease.
A general remark is here in order. Quantum corrections must disappear towards the end of 

inflation, when R ≤ R0. For this reason the boundary term λ(0) must be chosen according to the 
condition

λ(0) � | 1

β2t
′
0 log[4�/R0] | , (2.19)

where R = 4� corresponds to the de Sitter (final) curvature attractor of the dark energy epoch 
of our Universe today, � being the cosmological constant. Only in this way can we be sure 
that quantum corrections are negligible in the whole curvature range 4� < R < R0. Thus, the 
parametrization in (2.18) guarantees that the cosmological constant term �(t ′) does not play any 
significative role, neither at high curvature nor at small curvature, and thus we can neglect its 
contribution.

In the next chapter, the possibility to get an early-time inflation from our gravitational model 
will be discussed. Contributions from the modified function fDE(R) and the matter Lagrangian 
inside the action turn out to be negligible, and we will consider inflation as a manifestation of 
high-curvature corrections to GR, which take into account quantum effects.

3. Early-time inflation in higher-derivative gravity

Let us consider the general form of flat FRW space–time

ds2 = −N(t)2dt2 + a(t)2(dx2 + dy2 + dz2) , (3.1)

where a ≡ a(t) is the scale factor of the Universe and N(t) is an einbein function of the cosmo-
logical time. If we take the variation of the Weyl term, as

δIC2 = 1
′ δ

(√−gC2
)

+
(√−gC2

)
δ

(
1

′

)
, (3.2)
λ(t ) λ(t )
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we immediately note that on the FRW metric (3.1),

C2 = 0 ,
1

λ(t ′)
δ
(√−gC2

)
= 0 , (3.3)

so that the square of the Weyl tensor does not enter into the Friedmann field equations of the 
theory. In what follows, we will fix the usual gauge as N(t) = 1.

The evolution of the model in the vacuum at high curvature is governed by the first Friedmann-
like equation. If we neglect the contribution of fDE(R) and Lm in (2.4), the first Friedmann-like 
equation reads [22]

0 = 6H 2

κ2(t ′)
− 6H

(κ2(t ′))2

dκ2(t ′)
dt ′

(
t ′0Ṙ
R

)
+ ω(t ′)

3λ(t ′)
[
6RḢ − 12HṘ

] − 12H
d

dt ′

(
ω(t ′)
3λ(t ′)

)
Ṙt ′0

+ 6
(
H 2 + Ḣ

)
�(t ′)

t ′0
R

− 6H

[
d�(t ′)

dt ′

(
t ′0
R

)2

− �(t ′)
t ′0
R2

]
Ṙ − �̃(t ′) , (3.4)

with

�(t ′) =
[

R

(κ2(t ′))2

dκ2(t ′)
dt ′

+ R2 d

dt ′

(
ω(t ′)
3λ(t ′)

)
+ d�̃(t ′)

dt ′

]
. (3.5)

In the above expressions, the dot denotes time derivative, and the Ricci scalar is given by,

R = 12H 2 + 6Ḣ , H = ȧ

a
, (3.6)

with H the Hubble parameter.
Inflation is described by a (quasi) de Sitter solution, where the Hubble parameter is almost a 

constant, namely H = HdS. On the de Sitter solution RdS = 12H 2
dS, the system leads to

6H 2
dS

κ2(t ′)
+ �(t ′)

t ′0
2

− �̃(t ′) = 0 ,

�(t ′) =
[

12H 2
dS

(κ2(t ′))2

dκ2(t ′)
dt ′

+ 144H 4
dS

d

dt ′

(
ω(t ′)
3λ(t ′)

)
+ d�̃(t ′)

dt ′

]
. (3.7)

It is interesting to compare these expressions with the ones from higher-derivative quantum grav-
ity including the Gauss–Bonnet G and �R-terms. As we observed in the preceding section, when 
one deals with running coupling constants, the most general form of a quadratic higher-derivative 
theory is given by (2.4) plus the following gravitational part

IG ,�R = −
∫
M

d4x
√−g

[
γ (t ′)G − ζ(t ′)�R

]
, (3.8)

with γ ≡ γ (t ′) and ζ ≡ ζ(t ′) functions of the scale parameter t ′. In this case, the first Friedmann-
like equation of the model reads [22]

0 = 6H 2

κ2(t ′)
− 6H

(κ2(t ′))2

dκ2(t ′)
dt ′

(
t ′0Ṙ
R

)
+ ω(t ′)

3λ(t ′)
[
6RḢ − 12HṘ

]

− 12H
d

′

(
ω(t ′)

′

)(
Ṙt ′0

) + 6
(
H 2 + Ḣ

)
�(t ′)

t ′0

dt 3λ(t ) R
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− 6H

[
d�(t ′)

dt ′

(
t ′0
R

)2

− �(t ′)
t ′0
R2

]
Ṙ − 24H 3 dγ (t ′)

dt ′
t ′0Ṙ
R

− 6H

[
dγ (t ′)

dt ′
t ′0Ġ
R

]

− 3AṘ2 − 2BṘ2R + 6
d

dt

[
2A

(
4H 2 + 3Ḣ

)
Ṙ +BHṘ2

]
+ 18H

[
2A

(
4H 2 + 3Ḣ

)
Ṙ +BHṘ2

]
− 36

(
3H 2 + Ḣ

)
AHṘ − 72H

d

dt

(
AHṘ

)
− 12

d2

dt2

(
AHṘ

) − �̃(t ′) , (3.9)

where �(t ′) is still given by (3.5), the Gauss–Bonnet on FRW space–time corresponds to

G = 24H 2
(
H 2 + Ḣ

)
, (3.10)

and

A =
(

dζ(t ′)
dt ′

t ′0
R

)
, B =

[
d2ζ(t ′)
dt ′ 2

(
t ′0
R

)2

− dζ(t ′)
dt ′

t ′0
R2

]
. (3.11)

We see that, when γ , ζ are constant, we recover (3.4). For the de Sitter solution H = HdS we 
have now

6H 2
dS

κ2(t ′)
+ �(t ′)

t ′0
2

− �̃(t ′) + 12H 4
dS

dγ

dt ′
t ′0 = 0 , (3.12)

and (of course) only the Gauss–Bonnet gives an additional contribution with respect to the case 
in (3.7).

Generally speaking, for large values of the Hubble parameter, when we neglect �̃, Eq. (3.7)
assumes the form

−α(t ′)H 4
dS + β(t ′)H 2

dS � 0 , (3.13)

where α and β are dimensionfull (positive) functions of the scale parameter t ′. Thus, the de Sitter 
solution reads,

H 2
dS � β(t ′)

α(t ′)
, t ′ = t ′0

2
log

[
RdS

R0

]2

. (3.14)

If we add to the model the Gauss–Bonnet contribution, the first Friedmann-like equation for 
constant Hubble parameter (3.12) takes the (asymptotic) form:(

−α(t ′) + 12
dγ

dt ′
t ′0

)
H 4

dS + β(t ′)H 2
dS � 0 , (3.15)

leading to the solution,

H 2
dS � β(t ′)[

α(t ′) − 12(dγ /dt ′)t ′0
] . (3.16)

We conclude that a contribution of the Gauss–Bonnet kind in the gravitational action as 
∼ −γ (t ′)G increases the curvature of inflation if 0 < dγ/dt ′, and vice-versa, it decreases the 
curvature of the inflationary Universe provided that dγ /dt ′ < 0.

Let us return to the simplified action (2.4) with (3.4)–(3.7). By using the set of equations 
(2.6)–(2.7), one derives, from (3.7),
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0 = 6H 2

κ2
− t ′0

48(κ2)2ω2

(
480H 4(κ2)2ω2(4ω(2ω + 3) + 1)

+ 24κ2λωH 2
(
−40ω2 + 26ω + 3

)
− 3λ2

(
20ω2 + 1

))
, (3.17)

where the functions λ , ω , κ2 are assumed to be constant with respect to time.
By taking into account the expressions of κ2 , λ , ω and �̃ derived in the preceding section 

(note that α(t ′) in (3.13) turns out to be constant), by taking κ4
0 �̃ � 1 (see (2.17)–(2.18) with 

λ0 � 1), we derive, in the limit 1 � t ′ when the quantum corrections are relevant,

H 2
dSκ2

0 � 0.107

t ′0(λ(0)t ′)0.77
. (3.18)

In fact, our de Sitter solution emerges from the one-loop corrections encoded in (3.5). In Starobin-
sky’s inflationary scenario, where the coefficients of the action are constant and come from 
the trace-anomaly [26], the R2-term alone supports the de Sitter solution of inflation, while 
the Hilbert–Einstein term R/κ2 permits to slowly exit from the accelerated phase (this role 
can be played also by different power functions Rδ with δ < 2 [27]). However even in the 
Starobinsky model, when one takes the asymptotic limit R/κ2 � R2 in the Friedmann equa-
tion (0 � R2

dS − 12RdSH 2
dS), the mass scale of the theory is implicitly considered to be smaller 

than the Planck mass, in order to avoid super-Planckian curvatures, implying a sort of “running” 
mechanism (for some recent works on R2-gravity in this respect, see Refs. [28]).

We will now proceed with the investigation of the graceful exit from inflation. Let us consider a 
small perturbation around the quasi-de Sitter solution described by (3.18), namely

H = HdS + δH(t) , |δH(t)/HdS| � 1 . (3.19)

In the limit 1 � t ′, if we neglect the contribution of �̃, Eq. (3.4) reads

0 = (κ0δ̇H)

[
t ′0

(
(HdSκ0)

2
(

34.344 − 0.913t ′0
t ′

)
+ 0.001t ′ + 0.003t ′0

t ′ 3 (HdSκ0)
2 (λ(0)t ′)1.54

+ 0.346t ′0 − 0.086t ′

t ′ 2(λ(0)t ′)0.77

)
+ 19.152t ′ (HdSκ0)

2

]

+ (κ2
0 δ̈H)

t ′ 3 (HdSκ0)
3

[
t ′ 2 (HdSκ0)

4
(

6.384t ′ 2 + t ′0(11.448t ′ − 0.228t ′0)
)

− 0.043t ′ 2t ′0 (HdSκ0)
2

(λ(0)t ′)0.77
+ 0.001t ′ 2

0

(λ(0)t ′)1.54
+ 0.087t ′t ′ 2

0 (HdSκ0)
2

(λ(0)t ′)0.77
+ 2 × 10−4t ′t ′0

(λ(0)t ′)1.54

]

+ (HdSκ0) δH

[
0.223

(λ(0)t ′)0.77
+ 0.172λ(0)t ′0

(λ(0)t ′)1.77
− 30.528t ′0 (HdSκ0)

2
]

, (3.20)

and, for 1 � t ′, it leads to [22]

D0δH(t) + t ′[19.152(HdSκ0)(κ0δ̇H(t)) + 6.384(κ2
0 δ̈H(t))] � 0 , (3.21)

with

D0 =
[

0.223
′ 0.77

− 30.528t ′0
(
H 2

dSκ2
0

)]
� −28.444t ′0

(
H 2

dSκ2
0

)
. (3.22)
(λ(0)t )
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The solution of Eq. (3.21) is

δH(t) = h± exp
[
A±t

]
, A± =

[
HdS

2

(
−3 ±

√
9 − 0.627D0

(H 2
dSκ2

0 )t ′

)]
, |h±/HdS| � 1 ,

(3.23)

where h± are integration constants corresponding to the plus and minus signs inside A±, respec-
tively. Since D0 is negative, the solution turns out to be unstable, namely, for 1 � t ′,

δH(t) � h+eA+t , A+ � 1.486

(
HdSt ′0

t ′

)
, (3.24)

with h+ < 0 to make the Hubble parameter decreasing.
If we introduce ti and te as the initial and the final time of the early-time acceleration, respec-

tively, we can set h+ = −HdSe−A+te , and thus obtain

H = HdS

(
1 − eA+(t−te)

)
, ti � te , (3.25)

so that the Hubble parameter tends to vanish at the end of inflation.
The number of e-folds is a valid parametrization frequently used in the study of early-time 

inflation. It is defined as

N = ln

(
a(te)

a(t)

)
. (3.26)

By taking into account that a(t) ∼ eHdSt , we get

t = te − N

HdS
. (3.27)

Thus, the Hubble parameter during inflation behaves as

H � HdS

(
1 − e

− A+N

HdS

)
. (3.28)

When 0 � N the Hubble parameter is given by the de Sitter solution H � HdS, while, when 
N → 0, the Hubble parameter decreases and goes to zero (i.e. R0 � RdS), allowing the model to 
exit from the inflationary phase.

The total e-fold number of the corresponding inflation

N = ln

(
a(te)

a(ti)

)
� HdS(te − ti) , (3.29)

must be large enough in order to appropriately lead to the thermalization of our observable Uni-
verse and to solve the problem of the initial conditions of the Friedmann Universe, too. In general 
it is required that 60 ≤N . Moreover, given that when N =N it must be H � HdS, we can iden-
tify HdS/A+ as the minimal value of e-folds Nmin at which inflation can start, namely

60 ≤ Nmin = HdS

A+
≤N . (3.30)

It turns out that (3.28) can be rewritten as
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H � HdS

(
1 − e

− N
Nmin

)
. (3.31)

We observe that Nmin encodes the curvature expansion rate of inflation as

Nmin � (1.486)−1 log

[
RdS

R0

]
, (3.32)

where we have used (3.24) with (2.5). Once the curvature expansion rate RdS/R0 is fixed, by 
taking into account Eq. (3.18), we obtain a relation between the curvature at the time of inflation 
and the boundary parameter λ(0),

RdS = 1.284

(t ′0κ2
0 )

(
λ(0)t ′0 log[RdS/R0]

)0.77
. (3.33)

In the next section we will investigate the cosmological perturbations left at the end of inflation, 
and we will derive the spectral index and the tensor-to-scalar ratio of the model. Accurate com-
parison with astronomical data will establish the value of the curvature expansion rate RdS/R0.

4. Cosmological perturbations during inflation

During the inflationary stage the Hubble parameter slowly decreases in the so called “slow-roll 
approximation” regime, provided the following conditions are met

| Ḣ

H 2
| � 1 , | Ḧ

HḢ
| � 1 . (4.1)

In particular, the slow-roll parameter ε,

ε = − Ḣ

H 2
≡ 1

H

dH

dN
, (4.2)

must be small and positive during inflation, while it tends towards one when the early-time ac-
celeration ends. Using (3.31), we obtain

ε � e
− N

Nmin

Nmin
. (4.3)

One of the most important prediction of inflation consists in the description of the anisotropies 
of our Universe at galactic scale. In this respect, perturbation theory is the key mechanism to 
calculate the inhomogeneities left at the end of the primordial accelerated expansion, and leads 
to the derivation of the spectral index and of the tensor-to-scalar ratio for scalar and tensorial 
perturbations, respectively. Therefore, only if these indexes fit the inferred values in our observ-
able Universe will the theory be considered to be viable and to lead to a realistic description of 
inflation.

An important remark is in order. If one considers the full form of the renormalizable ac-
tion (2.4), the Weyl term appears. As we recalled before, it actually does not contribute to the 
Friedmann-like equations of the theory: neither inflation itself, nor the graceful exit phase, e-fold 
number (3.29), nor the ε slow-roll parameter (4.3) depend on it. However, when one introduces 
the cosmological perturbations around the FRW metric, the Weyl term plays a role in the per-
turbed equations [30–32]. In Refs. [31] it has been shown that in pure Weyl conformal gravity the 
scalar perturbations do not propagate in the de Sitter background, while the vector and the tensor 
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power spectra are constant, as a consequence of the invariance of the Weyl tensor with respect to 
conformal transformations. This behavior seems to be confirmed in Weyl invariant scalar tensor 
theories [32]. In our case, however, the Weyl term may change the evolution of the cosmological 
perturbations of the model. For example, if one starts with scalar perturbations in the Newton’s 
gauge,

ds2 = − (1 + 2�(t,x)) dt2 + a(t)2 (1 − 2�(t,x)) (dx2 + dy2 + dz2) , (4.4)

with � ≡ �(t, x) and � ≡ �(t, x) scalar functions of the space–time coordinates, we derive √−gC2 = (4/3) 
[∇2(� + �)

]2
. In the background of Einstein’s gravity one has � = � , while 

in a F(R)-theory of gravity � = −�̇/(H + ḞR(R)/(2FR(R))), and we see that the square of 
the Weyl tensor is here different from zero.

It lies beyond the scope of our work to investigate these implications of the Weyl tensor in the 
perturbative theory of F(R)-gravity, namely because in our action the square of the Weyl tensor 
C2 is coupled with the Ricci scalar at the inflationary scale, rendering the system very involved. 
Cosmological perturbation theory in the presence of the Weyl term is still a debated subject (see 
e.g. Ref. [33]). In what follows, we will neglect its contribution in dealing with a F(R)-gravity 
model. Thus, the spectral index ns and the tensor-to-scalar ratio r read [34],

(1 − ns) � −2

ε

dε

dN
, r � 48ε2 , (4.5)

where for the tensor-to-scalar ratio we have used second order corrections (the first order ones 
simply vanish). By using (4.3), we immediately get

(1 − ns) = 2

Nmin
, r = 48

N 2
min

e
− 2N

Nmin , (4.6)

where we set N = N during inflation. Recent analysis of Planck data [4] constraint these quan-
tities as ns = 0.968 ± 0.006 (68% CL) and r < 0.11 (95% CL). Therefore, the general condition 
to realize a realistic inflationary scenario is

Nmin = HdS

A+
� 60 , 60 �Nmin ≤N . (4.7)

The second condition is trivially satisfied by realistic models of inflation. On the other side, the 
first condition fix the curvature expansion rate since, by using (3.32), we obtain

RdS � R0e89 . (4.8)

Now we must involve (3.33) in order to fix the boundary term λ(0)

RdS = R0e89 � 0.040

(t ′0κ2
0 )

(
λ(0)t ′0

)0.77
. (4.9)

Without loss of generality, we can set

t ′0 = 1 , (4.10)

and introduce the Planck mass in κ2
0 (2.14), namely

κ2
0 = 3.49 × 10−55eV−2 . (4.11)

By taking into account the value of the cosmological constant (see also Ref. [29]),
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� = 11.895 × 10−67eV2 � 10−122M2
Pl , (4.12)

we obtain a realistic ratio RdS/(4�) = 10130 by setting

λ(0) = 8 × 10−16 . (4.13)

In this case the right hand side of (2.19) yields ∼ −3.5 × 10−4 and the condition is well satis-
fied. Here, we must stress that the model predicts inflation with curvature at least 130 orders of 
magnitude larger than the curvature of the Universe today. Indeed, if the curvature of inflation is 
smaller, condition (2.19) is not fulfilled and the matter/radiation eras with the following late-time 
acceleration may be not well reproduced, so that a unified description fails.

At the end of the early-time acceleration stage some reheating mechanism is involved with the 
purpose to convert the inflation energy into standard matter and radiation (e.g., the quark gluon 
plasma). Since quantum gravity effects then disappear, the gravitational Lagrangian in (2.4) reads 
(we still neglect dark energy in fDE(R))

L � √−g

[
R

κ2
0

+ 0.02

λ(0)
R2 + 1

λ(0)
C2

]
, (4.14)

where we have taken into account (2.12) and (2.16) with (2.17). Once again, the square of the 
Weyl tensor does not contribute to the field equations in FRW space–time and the reheating 
mechanism coincides with the one for R2-inflation. The first Friedmann-like equation leads to

Ḧ − Ḣ 2

2H
+ λ(0)

0.24κ2
0

H = −3HḢ , (4.15)

with the oscillating solution

H � 4

3(t − tr)
cos2

[√
λ(0)

0.12κ2
0

(t − tdS)

2

]
, (4.16)

where tr is the time at reheating, and, since < H >� 2/(3(t − tr)), we get a matter-like cosmo-
logical evolution. By taking into account that the Hubble parameter tends to vanish at the end of 
inflation1 (R0 � RdS), and R � 6Ḣ , we derive for the Ricci scalar

R � − 4

(t − tr)

√
λ(0)

0.12κ2
0

sin

[√
λ(0)

0.12κ2
0

(t − tr)

]
. (4.17)

And using the Lagrangian of a scalar bosonic field2 χ with mass mχ and non-minimally coupled 
with gravity,

Lχ = −gμν∂μχ∂νχ

2
− m2

χχ2

2
− ξRχ2

2
, (4.18)

ξ being a coupling constant, one obtains the field equation

1 In the second reference of [12] the critical value of the curvature during reheating for a combined model of 
R2-inflation with exponential F(R)-gravity for dark energy F(R) = −βRc(1 − e−R/Rc ) has been accurately calcu-
lated as Rcr = Rc logβ .

2 The production of bosons is favored with respect to that of fermions during reheating [3].
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�χ − m2
χχ − ξRχ = 0 . (4.19)

By decomposing the field χ into Fourier modes χk ≡ χk(t) with momentum k, on FRW space–
time, we get

χ̈k + 3Hχ̇k +
(
m2

χ + ξR
)

χk = 0 . (4.20)

Now we can introduce a conformal time dη = dt/a(t), such that

d2

dη2
uk + m2

effa(t)2uk = 0 , uk = a(t)χk , (4.21)

where the effective mass meff is given by

m2
eff =

[
m2

χ +
(

ξ − 1

6

)
R

]
. (4.22)

Since the Ricci scalar oscillates as in Eq. (4.17), the number of massive particles χk changes 
with time and the reheating mechanism takes place. We should note that, even in the case of 
minimal coupling with gravity ξ = 0, the effective mass m2

eff still depends on R and we do get 
reheating. After particle production, when the energy density of radiation and ultrarelativistic 
matter becomes dominant and the R2-term in the Lagrangian vanishes, due to the condition 
(2.19), the usual radiation/matter era can start.

The second part of our work is thus devoted to the study of Friedmann cosmology; in the 
next section we will introduce modified gravity for the dark energy sector through the function 
fDE(R) in (2.4). We will see that a complete picture of the matter era and of dark energy de Sitter 
expansion can be recovered in our model, thus confirming that high-curvature corrections of the 
model disappear at small curvature, as expected.

5. Dark energy from exponential gravity

In Refs. [10,11,35] several versions of viable modified gravity for the dark energy epoch 
have been proposed and investigated. They belong to a class of so-called “one-step models”, 
which produce reasonable description of the dark energy evolution of our Universe today. They 
incorporate a vanishing cosmological constant in the flat limit (R → 0), and exhibit a suitable, 
constant asymptotic behavior for large values of the curvature, mimicking in fact the �CDM 
Model.

In this work we deal with a modified version of exponential gravity [10] where, in order to 
reproduce the dark energy sector, we introduce the following form of fDE(R) in the action (2.4),

fDE(R) = −2�g(R)(1 − e−aR/�)

κ2
0

, (5.1)

where a is a positive parameter, � is the cosmological constant whose value has been given 
in (4.12), and κ2

0 is the mass scale in (2.14). Moreover, g(R) is a function of the Ricci scalar 
which will play an important role at large curvature and will be discussed later. We require that 
g(R) = 1 when R = 0, in order to recover the Minkowski solution of General Relativity in flat 
space–time.

The magnitude of the modified gravity function introduced above can be estimated as 
|fDE(R)| � 2�/κ2

0 . For a comparison with the higher curvature corrections in (2.4), we note 
that at the end of inflation R/κ2(t ′) � R0/κ0. For example, by using (4.9)–(4.13), one finds 
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|fDE(R0)|/(R0/κ
2
0 ) � 2.2 × 10−92 and we easily understand that the modification of gravity for 

the dark energy sector is completely negligible at the inflationary era.
Exponential gravity reproduces the cosmological constant at large curvature when

fDE(R) � −2�g(R)

κ2
0

, � � R , (5.2)

and for this reason we here set

a = 1

2
, (5.3)

but, in general, any choice of 0 < a ≤ 1 is still reasonable. Therefore, when g(R) remains close 
to one, we can reproduce the standard �CDM model.

Let us introduce the following definition

F(R) � R + κ2
0 fDE(R) . (5.4)

We do not consider the induced quantum corrections of the model because curvature is rather 
small and quantum gravity effects are not essential. In what follows, we will study the vacuum 
de Sitter solution and we will give some general considerations on its behavior at small curvature. 
In Sections 6, 7 a detailed analysis on the dark energy expansion in our model will be carried 
out, and we will consider again the whole form of the Lagrangian discussed in the first section. 
Thus, it will be clear that quadratic corrections of the theory are negligible in the late Friedmann 
Universe.

Since modified gravity introduces a new degree of freedom, the following conditions must be 
unavoidably met

|FR(R) − 1| � 1 , 0 < FRR(R) , when 4� < R . (5.5)

The first one is necessary to correctly reproduce the Newton constant, avoiding antigravitational 
effects during matter, radiation and dark energy eras, while the second condition is necessary to 
prevent the occurrence of matter instabilities [36,37,16] (see also Ref. [38]). We should note that 
pure exponential gravity (g(R) = 1) does satisfy (5.5), but, due to the fact that RFRR(R) � 0+
for large values of R, some singular solution may emerge in the theory [13]. In Ref. [14] where 
the problem has been studied in detail, the singularities are avoided with the introduction of a 
R1/3-term in the gravitational action, while here the “curing” term is included in the dark energy 
function fDE(R) through g(R). We propose the following form of g(R),

g(R) =
[

1 − b

(
R

4�

)
log

[
R

4�

]]
, 0 < b , (5.6)

b being a constant positive parameter. We will better understand the motivations of this choice 
in the next section. Here, we analyze the behavior of the model at small curvature. The field 
equations of the theory can be written as

3�FR(R) + RFR(R) − 2F(R) = κ2
0T , (5.7)

where T is the trace of the stress-energy tensor associated with the matter Lagrangian. We im-
mediately observe that, since g(R) = 1 and fDE(R) � −2� when R = 4�, the model admits 
the (vacuum) de Sitter solution and leads to the accelerated expansion of our Universe today. By 
considering a perturbation δR ≡ δR(t), |δR/R| � 1, around the de Sitter solution, we derive 
from (5.7) in vacuum
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(
δ̈R + 3Hδ̇R − m2

effδR
)

� 0 , m2
eff = 1

3

(
FR(R)

FRR(R)
− R

)
, (5.8)

and the solution is stable when the effective mass m2
eff is positive, namely [39],

1 <
FR(R)

RFRR(R)
. (5.9)

Since for our model FR(R) � 1 and FRR(R) � b/(2R) when R = 4�, it is easy to see that, if 
0 < b, the de Sitter solution is stable and it is moreover a final attractor of the system, when in 
the expanding Universe the contents of matter and radiation vanish (namely, in the asymptotic 
future).

Before passing to the next section where the features of the function g(R) will be investigated 
in the context of the radiation/matter evolution (T = 0 in (5.7)), we here conclude with some 
observations about the parameter b of g(R). Since we would like to maintain the same behavior 
of the �CDM model at late time, we must set the parameter b according to the condition

b �
[(

R

4�

)
log

[
R

4�

]]−1

, 4� ≤ R � R0 , (5.10)

where we recall that R0 is the curvature of the Universe at the end of inflation. A reasonable 
choice is

b = 10−5. (5.11)

In this case the condition (5.10) is satisfied also at still higher curvatures (matter era), up to the 
value R � 4� ×104. For larger values of the curvature, matter and radiation are highly dominant, 
but conditions (5.5) are still required and are well satisfied when 4� ≤ R � R0. In this case,

(FR(R) − 1) � b

2

[
1 + log

[
R

4�

]]
, FRR(R) � b

2R
. (5.12)

For example, if R = R0, where R0 is given by (4.9) with (4.10)–(4.13), namely R0 � 2 × 1091 ×
4�, we get (FR(R) − 1) � 10−3 and the model is not affected by antigravity. Finally, when b is 
positive the second condition in (5.5) is automatically satisfied.

6. Radiation/matter evolution

In this section we study the evolution of the model during the radiation and matter eras. 
When matter or radiation are dominant, an oscillating behavior of the dark energy may affect 
the solution and could bring to the appearance of unphysical singularities. This is a well-known 
problem of modified gravity for dark energy, strictly related to the fact that RFRR(R) � 1 but 
FRR(R) = 0, at large curvature, and requires a careful investigation.

If one introduces the variable

yH ≡ ρDE

ρm(0)

, (6.1)

where ρDE is the dark energy density at some time and ρm(0) the matter energy density3 of the 
Universe today, the implicit form of the first Friedmann-like equation reads

3 The matter energy density includes both cold and baryonic matter.
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yH (z) = H(z)2

m2
− (z + 1)3 − χ(z + 1)4 , (6.2)

where y ≡ yH (z) and H ≡ H(z) have been expressed as functions of the redshift normalized to 
one at present, namely z = [

1/a(t) − 1
]
, χ is referred to as the energy density of radiation today 

ρr(0), namely χ ≡ ρr(0)/ρm(0), and m2 is the mass scale associated with the Planck mass; it is 
given by

m2 ≡ κ2
0ρm(0)

6
,

with κ2
0 as in (4.11). Cosmological data lead to

m2 � 1.82 × 10−67eV2 , χ � 3.1 × 10−4 . (6.3)

The FRW field equations of the model supplied by the usual conservation laws of matter and 
radiation can be recast as [12]

d2yH (z)

dz2
+ J1

dyH (z)

dz
+ J2yH (z) + J3 = 0 , (6.4)

with

J1 = 1

(z + 1)

[
−3 − 1

yH + (z + 1)3 + χ(z + 1)4

1 − FR(R)

6m2FRR(R)

]
,

J2 = 1

(z + 1)2

[
1

yH + (z + 1)3 + χ(z + 1)4

2 − FR(R)

3m2FRR(R)

]
,

J3 = −3(z + 1)

− (1 − FR(R))((z + 1)3 + 2χ(z + 1)4) + (R − F(R))/(3m2)

(z + 1)2(yH + (z + 1)3 + χ(z + 1)4)

1

6m2FRR(R)
. (6.5)

Now, F(R) corresponds to the whole gravitational Lagrangian of the model in the FRW space–
time, namely

F(R) = κ2
0

[
R

κ2(t ′)
− �̃(t ′) − ω(t ′)

3λ(t ′)
R2 + fDE(R)

]
, (6.6)

where t ′ is given by (2.5) and the Ricci scalar (3.6) is derived from (6.2), as

R = 3m2
[

4yH (z) − (z + 1)
dyH (z)

dz
+ (z + 1)3

]
. (6.7)

At late times (z � 1), when dark energy is dominant and the contribution of matter ∼ (z + 1)3 is 
negligible in (6.7), the solution of (6.4)–(6.5) is

yH � �

3m2
+ y0Exp

[
±i

√
1

�FRR(4�)
− 25

4
log[z + 1]

]
, (6.8)

with y0 an integration constant. For our model, as �FRR(4�) � 1, the argument of the square 
root is positive. For example, by setting a , b as in (5.3) and (5.11), respectively, given � as in 
(4.12), and using the parameterization in (2.16)–(2.17) and (4.9)–(4.13) for the higher curvature 
corrections of the model, we get [1/(�FRR(4�)) − 25/4] � 366.37. As a consequence, the dark 
energy develops an oscillatory behavior [40]. In our example, we derive that the frequency of 
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oscillations ν with respect to log[z + 1] is ν � √
366.37/(2π) � 3.04, confirming the stability of 

the de Sitter solution.
At large curvature, the oscillation frequency of dark energy can diverge. If we assume that the 

contribution of dark energy in (6.7) is negligible (0 � z), after the expansion of (6.4)–(6.5) with 
respect to yH/(z+1)3 � 1, we find the following solution in the vicinity of a given redshift z [13,
14],

yH(z + δz) � �

3m2
+ y0Exp [±iνδz] , (6.9)

where |δz/z| � 1, y0 is an integration constant, and the oscillation frequency of dark energy ν
reads

ν � 1

2π
√

RFRR(R)(z + 1)
. (6.10)

Note that the dark energy oscillations are amplified in the related dark energy equation of state 
(EoS) parameter, as

ωDE(z) = −1 + 1

3
(z + 1)

dyH (z)

dz
, (6.11)

which oscillates around the line of the phantom divide.
We see that the model can correctly reproduce the quasi-constant dark energy amount yH (z) �

�/(3m2) with EoS parameter ωDE � −1, but if 0 < RFRR(R) � 1 the dark energy density 
oscillates with high frequency and some singularities may emerge in the solution, rendering it 
unphysical. This is the case of pure exponential gravity, where at large redshift the dark energy 
frequency diverges and singularities appear.

As we have recalled above, in Ref. [14] an additional term proportional to −R1/3 has been 
added to the model to solve the problem. As a consequence, one has ν ∝ R1/3/(z + 1) and at 
high redshift, at least during the matter era with R � 3m2(z+1)3, the oscillation frequency of the 
dark energy turns out to be constant, stabilizing the theory. In our case, thanks to the introduction 
of g(R) as in (5.6), we obtain

ν �
√

2/b

2π(z + 1)
. (6.12)

This result is independent of the on-shell form of the Ricci scalar (radiation/matter solution) and 
it shows that the frequency of the dark energy oscillations decreases back into the past, thus 
avoiding any kind of singularity. In the next section we will provide a numerical simulation of 
the dark energy evolution in our model. We will confirm our results, obtained in a semi-analytic 
way, and will prove that the model is able to reproduce the late-time expansion of the Universe 
in accordance with the astronomical data.

7. A numerical simulation

In this section we will proceed with a numerical test of our model at late times. We will 
use the system (6.4)–(6.5) and the whole form of the Lagrangian in (6.6). The Planck mass and 
cosmological constant are fixed as in (4.11)–(4.12). The forms of λ(t ′) and ω(t ′) are given by 
(2.8) and (2.12), respectively, with β2 in (2.7). The form of �̃(t ′) is given by (2.16) with (2.17)
and we can drop it down, as explained. For λ0, the boundary term of inflation, we have used the 
value in (4.13). The parameter t ′ is defined by (2.5), with (4.9) and (4.10). Remember that, with 



430 E. Elizalde et al. / Nuclear Physics B 921 (2017) 411–435
such kind of parametrization, we get a realistic inflationary scenario at high curvature. Finally, 
the dark energy function fDE(R) is given by (5.1)–(5.6), where for the parameters a and b we 
may choose the values in (5.3) and (5.11).

We have performed a numerical simulation4 for −1 < z < zmax with zmax = 10. Thus, we 
need the boundary conditions of the system at z = zmax, namely yH (zmax) and dyH (zmax)/dz. 
They can be derived from the explicit form of ρDE in (6.2) for F(R)-gravity, namely

ρDE = 1

κ2
0FR(R)

[
(RFR(R) − F(R)) − 6HḞR(R)

]
. (7.1)

In our case, when � � R � R0, we get

yH (z) �
(

�

3m2

)(
g(R) + 6HgRR(R)Ṙ

]
, (7.2)

where R ≡ R(z) and H ≡ H(z) such that Ṙ = −H(z + 1)(dR/dz). At large redshift z = zmax, 
by assuming yH to be negligible in (6.7), we can take R = 3m2(z + 1)3 and H = m(z + 1)3/2. 
Here, we are avoiding the radiation contribution also, namely we are in the case χ(z + 1) � 1. 
As a consequence, the boundary conditions of the system are given by

yH (zmax) =
(

�

3m2

)[
g(Rmax) − 54m4(zmax + 1)6gRR(Rmax)

]
,

dyH

dz
(zmax) = 3�(z + 1)2

[
gR(Rmax) − 6R2

maxgRRR(Rmax) − 12RmaxgRR(Rmax)
]

, (7.3)

with

Rmax = 3m2(zmax + 1)3 . (7.4)

We start our simulation at zmax = 10, so that

yH (zmax) = 2.1818 ,
dyH

dz
(zmax) = −0.0000260653 , zmax = 10 . (7.5)

Note that χ(zmax + 1) � 0.00341 � 1, and we effectively are in a matter dominated Universe. 
We should also stress that the chosen redshift range −1 < z < 10 includes a very important part 
of the history of our Universe. Just recall that the age of the first observed galaxies corresponds 
to a redshift z � 6, even if the existence of older galaxies cannot be excluded.

It is interesting to compare the values above with the corresponding ones for the �CDM 
model, namely

yH =
(

�

3m2

)
= 2.17857 ,

dyH

dz
= 0 . (7.6)

Thus, we see that our model remains extremely close to the �CDM model at high redshift.
In Fig. 1 and Fig. 2 we plot yH (z) and ωDE(z) (6.11), respectively, for −1 < z < 10. At high 

redshift the oscillations of the dark energy density are amplified in its EoS parameter but their 
frequency does not diverge and, as we will better see later, it tends to decrease back into the past, 
when the curvature increases.

In Fig. 3 we compare the plots of yH (z) and ρm(z)/ρm(0) = (z + 1)3, ρm(z) being the matter 
energy density at a given redshift z, for −1 < z < 1. We clearly see that at the cosmological level 

4 Mathematica 8 ©.
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Fig. 1. Plot of yH (z) for −1 < z < 10.

Fig. 2. Plot of ωDE(z) for −1 < z < 10.

yH (z) is almost a constant, while the energy density of matter decreases with the redshift. The 
dark energy epoch starts at z < 0.4, in full agreement with the �CDM description.

To show how the oscillation frequency of dark energy decreases with increasing redshift (i.e., 
the curvature in the Friedmann expanding Universe), in Fig. 4 we plot yH (z) for the intervals 
5 < z < 5.2 (on the left) and 8 < z < 8.2 (on the right), respectively. The numerical simulation 
confirms the result in (6.12) which implies that, given a small redshift interval δz in the vicinity 
of the redshift value z, the number of dark energy oscillations n(z) turns out to be

n(z) =
√

2

b

δz

2π(z + 1)
. (7.7)

Thus, by setting δz = 0.02, we obtain n(z = 5) � 2.37 and n(z = 8) � 1.58 as in the plots.
At small redshift the system is dominated by dark energy. We confirm that the de Sitter solu-

tion is a final attractor of the system. If we introduce the parameter �DE(z) as the ratio between 
the dark energy density ρDE and the effective energy density ρeff of our FRW Universe,
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Fig. 3. Plot of ρm(z)/ρm(0) and yH (z) for −1 < z < 1.

Fig. 4. Plot of yH (z) for 5 < z < 5.2 (a) and 8 < z < 8.2 (b).

�DE(z) ≡ ρDE

ρeff
= yH (z)

yH (z) + (z + 1)3 + χ(z + 1)4
, (7.8)

by extrapolating yH (z) at the current redshift z = 0, from (7.8) and (6.11), we have

�DE(z = 0) = 0.685683 , ωDE(z = 0) = −0.998561 , (7.9)

in agreement with the most recent cosmological data analysis [4], which give �DE(z = 0) =
0.685 ± 0.013 and ωDE(z = 0) = −1.006 ± 0.045.

In conclusion, we have proven that the model can correctly reproduce the late-time accelera-
tion of the Universe, being also perfectly compatible with inflation at high curvature.

8. Conclusion

We have obtained in this work a quite natural unified description of the early- and late-time 
accelerated expansion of our Universe at two completely different energy scales. To achieve 
this nice result, we have considered a gravitational Lagrangian with quadratic corrections for 
inflation and a contribution from phenomenological exponential F(R)-modified gravity for the 
dark energy sector.
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As conveniently explained in the paper, these high-curvature corrections to Einstein’s theory 
are well motivated by quantum gravity. And, given the fact that the Hilbert–Einstein action for 
GR is not renormalizable, it is also compulsory to consider an effective improved action with 
an ultraviolet completion at high-energy scale, which might eventually lead to a renormalizable 
theory. As a starting step in this direction, in this paper we have used a rather simple model 
for renormalizable quadratic gravity but we have already found that unstable early-time inflation 
arises in our model at high curvature. We have also shown that our model for inflation can be 
naturally extended to include in the action the Gauss–Bonnet and �R terms, with respective run-
ning coupling constants.5 The new set of RG equations for the coupling constants, corresponding 
to this case, have been derived.

We have obtained an early-time inflationary stage consistent with the cosmological data and 
yielding an e-fold number, which is large enough in order to lead to the necessary thermaliza-
tion of our observable Universe, and also a spectral index and tensor-to-scalar ratio that fit very 
well the most accurate Planck results. Moreover, at the end of inflation, when the quantum ef-
fects disappear, our model evolves into the usual R2 correction to GR, and provides a perfectly 
appropriate reheating mechanism, as well.

Here, we would like to point out that the presence of the square of the Weyl tensor in the 
gravitational Lagrangian, which is fundamental in order to deal with a renormalizable theory, 
may only modify the study of cosmological perturbations. In a pure conformally invariant theory, 
the contribution of the Weyl tensor vanishes in the primordial scalar power spectrum and leads 
to constant terms in the spectra of vector and tensor perturbations. It is not clear what happens 
when one considers a more involved theory. In our case, where the Weyl tensor is coupled with 
the Ricci scalar through the relative running coupling constant, the change of the curvature rate 
of the model during the exit from inflation may be modified in order to correctly predict the 
cosmological data. On the other hand, the lower bound on the e-fold number, which is found in 
the FRW background and is independent on the Weyl term, is still fixed at Nmin � 60. For these 
reasons, we may argue that the spectra of the perturbations left at the end of inflation still remains 
realistic, although this point deserves for sure further investigation.

Exponential modified gravity for dark energy offers an accurate description of the current 
cosmic accelerated expansion. However, during the radiation and matter domination eras, sin-
gularities could emerge from the theory, thus rendering its solutions nonphysical. The problem 
stems from the fact that in modified gravity a new degree of freedom appears, which leads to 
a dark energy oscillatory behavior whose frequency may diverge at large curvature. For this 
reason, we have introduced a logarithmic correction to the cosmological constant parameter of 
the exponential F(R)-modified gravity function appearing in the action. Such additional term is 
qualitatively similar to the ones induced by quantum corrections at high curvature, but it works 
at the current scale and must be interpreted as a phenomenological modified-gravity term.

Thanks to our curing term, the theory turns out to be free from singularities and, as a con-
sequence, fitting simulations at large redshift can be readily carried out. The results of our 
semi-analytic analysis are well confirmed by these numerical simulations. We have also shown 
that the different stages of the universe evolution, namely radiation/matter and dark energy dom-
ination, do take place in our model after the inflationary epoch, similarly to what happens in the 
�CDM standard model. Also, we have shown that, in our model, the values of the basic cosmo-
logical parameters resulting from the latest and most accurate analysis of the astronomical data 

5 These terms appear in more fundamental formulations, as string theory and others.
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obtained with the Planck satellite, which provide the most reliable constrains on the nature of 
dark energy, can be faithfully recovered.
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