Таблица 1. Данные ЭДА

Образец		Элементный состав, %			
	Fe	0	Gd	Si	С
Gd _x Fe _{3-x} O ₄	20.55	40.23	9.82	-	-
Gd _x Fe _{3-x} O ₄ -TЭОС	4.35	47.20	2.02	36.34	6.53
Gd _x Fe _{3-x} O ₄ ТЭОС-МСПМА	1.88	56.01	1.15	20.93	18.73

В настоящий момент продолжается работа по модификации гадолиниевых ферритов и иммобилизации на их поверхность карборановых производных. Следующими этапами в данной работе будет исследование полученных наночастиц на цитотоксичность и реакторные исследования.

Список использованных источников

1. IARC, 150 Cours Albert Thomas, 69372 Lyon CEDEX 08, France

2. Barth R. F., Grecula J. C. Boron neutron capture therapy at the crossroads-Where do we go from here? //Applied Radiation and Isotopes 2019, C. 109029

3. Salt C. et al. Boron and gadolinium neutron capture therapy //Russian chemical bulletin. 2004, T. 53, №. 9, C. 1871-1888.

4. Sena N. C. et al. Gadolinium ferrite nanoparticles: synthesis and morphological, structural and magnetic properties //Ceramics International 2017, T. 43, №. 5, C. 4042-4047.

УДК 53.3937

ОСОБЕННОСТИ ВЗАИМОДЕЙСТВИЯ СЛАБОСВЯЗАННЫХ ЯДЕР ЛИТИЯ(а=6-11) ПРИ НИЗКИХ ЭНЕРГИЯХ: УПРУГОЕ РАССЕЯНИЕ И ПОЛНОЕ СЕЧЕНИЕ РЕАКЦИИ.

Елтай Жазира Алтайкызы

<u>Zhazira.eltai@bk.ru</u>

Магистрант 1-курса ЕНУ им. Л.Н. Гумилева, Нур-Султан, Казахстан Научный руководитель – Кутербеков К.А.

В обзоре представлены последние экспериментальные данные по суммарным реакционным сечениям и угловым распределениям дифференциальных сечений для упругого рассеяния легких слабосвязанных ядер лития (^{6,9,11}Li). Представлены результаты их совместного анализа с использованием широкого спектра моделей: от простых моделей сильного поглощения до современных теоретических подходов.

Экспериментальные исследования с пучками радиоактивных ядер позволили обнаружить новые интересные явления, связанные со свойствами ядер, расположенных далеко от области β -стабильности. Для некоторых легких ядер, богатых нейтронами, энергия E_n разделения валентного нейтрона (или нейтронов) чрезвычайно мала. По сравнению со стабильными ядрами, для которых она составляет около (6-8) МэВ, в этих ядрах энергия разделения одного или нескольких нейтронов составляет менее 1 МэВ. Распределение плотности нейтронов в таких слабо связанных ядрах имеет длинную часть, называемую нейтронным ореолом. Гало появляется в виде" хвоста " при распределении ядерной материи на расстоянии (5-10), где плотность составляет примерно 1/100 от ее плотности в ядре.

Увеличение радиуса по сравнению со стандартным приращением, определяемым зависимостью (A^{1/3}), является первым признаком наличия гало в экзотических ядрах. Было обнаружено существование двух типов гало. Первый тип (GNH-1) связан с общим увеличением размера ядра (в случае ядер ¹¹Li, ¹¹Be, ¹⁴Be и ¹⁷B). Второй тип гало (GNH-2)

наблюдается для ядер с нормальными размерами (например, ⁶He и ¹⁷He). Предполагается, что гало первого типа обусловлено очень низкой энергией связи валентных нейтронов, тогда как гало второго типа является результатом очень компактного (α-частица) ядра валентных нейтронов.

Низкая энергия связи нейтрона (или группы нейтронов) в ядрах гало ¹¹Li, ¹¹Be, ¹⁴Be, ¹⁷B и Ближний характер ядерных сил приводят к туннелированию нейтронов во внешнюю периферийную область на больших расстояниях от ядра ядра. В этом случае плотность распределения периферийных нейтронов значительно меньше плотности распределения нейтронов внутри ядра. Нейтронное облако, окружающее ядро, распространяется на большие расстояния, чем радиус ядра, определяемый соотношением $R = 1.3A^{1/3}$.

Рассмотрим наиболее типичные каналы реакций с легкими слабосвязанными ядрами.

1) слабо связанное ядро может быть упруго или неэластично рассеяно на ядрахмишенях.

2) слабо связанное ядро может полностью взаимодействовать с целевым ядром, и произойдет полное слияние.

3) слабосвязанное ядро в поле ядра-мишени может распасться, и в этом случае возможны несколько вариантов развития событий.

Суммарные поперечные сечения реакций для легких слабосвязанных (кластерных и экзотических) ядер.

Одной из важнейших характеристик взаимодействий легких экзотических ядер со стабильными ядрами-мишенями является сечение взаимодействия σ_I или полное сечение реакции σ_P . Танихата начал экспериментальное изучение легких экзотических ядер с измерения σ_I . В его работе впервые были измерены значения σ_I для ^{3,4,6,8} Не ядер, взаимодействующих с ядрами-мишенями Ве, С и Аl при энергии 790 МэВ/нуклон. В работах такие же измерения были проведены для изотопов ^{6-9,11}Li, бериллия и бора. Для всех изотопных цепей легких слабосвязанных ядер наблюдалось значительное увеличение R_{rms} с увеличением массового числа, отклоняющегося от зависимости A^{1/3}. В изотопах лития этот рост наблюдается при переходе от ^{6,7}Li к ⁹Li и, особенно, к ¹¹Li. На основе анализа измеренных сечений взаимодействия в рамках эмпирического подхода и приближения Глаубера был сделан вывод о значительном расширении плотности нейтронов в богатых нейтронами изотопах этих ядер , что позволило авторам выдвинуть и обосновать гипотезу о возможном существовании в некоторых из них так называемого нейтронного гало.

Ядро ⁹Li имеет энергию связи 4,064 МэВ по отношению к распаду (⁸Li+n) и имеет другое связанное состояние – первое возбужденное состояние при:

Е = 2,69 МэВ (1/2–).

Ядро ¹¹Li может быть представлено в виде ядра ⁹Li и двух нейтронов. Каждая из подсистем (⁹Li) и (n + n) слабо связана. В ядре ¹¹Li энергия разделения одного нейтрона (¹⁰Li+n) составляет 0,395 МэВ, энергия разделения двух нейтронов (⁹Li+2n) - 0,369 МэВ, и ядро не имеет возбужденных связанных состояний ниже этих энергий. Поэтому корреляции в двухчастичных подсистемах играют важную роль в ядре ¹¹Li – они повышают стабильность ядер, особенно при соединении двух гало-нейтронов. Взаимодействие между двумя валентными нейтронами может быть настолько сильным, что в ядре ¹¹Li они могут образовывать два сильно коррелированных нейтрона (динейтрона). Однако вопрос о существовании динейтрона все еще остается открытым. Поэтому изучение корреляций этих нейтронов и возможности эмиссии нейтронов из них не представляется возможным системы, состоящие, например, из двух нейтронов (динейтронов) или четырех нейтронов (тетранейтронов), являются важной экспериментальной проблемой. Такие эксперименты в настоящее время проводятся на пучках радиоактивных ядер.

Измерения σ_R для большой группы легких экзотических ядер при промежуточных энергиях были впервые проведены. В экспериментах использовались Кремниевая мишень и новый прямой метод измерения ТРК. Эксперименты проводились с пучком ⁹Li при 31,5 МэВ/ нуклон и пучком ¹¹Li при 25,5 МэВ / нуклон. Для анализа экспериментальных данных

авторы использовали модель сильного поглощения с параметризацией Кох. В целом результаты, полученные при промежуточных энергиях, подтвердили тенденции, наблюдаемые при анализе экспериментальных данных по о I при высоких энергиях. Для ⁹Li было получено значение $r_0 = 1.168$ fm, а для ¹¹Li: $r_0=1.42$ fm. Эти значения r0 значительно больше стандартного значения $r_0=1,10$ fm, используемого при описании взаимодействий стабильных ядер.

Импульсное распределение

Информацию о размерах и энергии связи слабосвязанных (кластерных и экзотических) ядер можно получить из МО-ментальных распределений продуктов (ядроядро и валентные нейтроны), образующихся при их распаде. Низкая энергия связи таких ядер приводит к небольшой ширине распределения импульса. В отличие от стабильных ядер, для которых величина распределения импульса составляет около 100 МэВ/С, для слабосвязанных ядер эта величина лежит в диапазоне (25-45) МэВ/с. Таким образом, измеряя распределение импульса продуктов распада ядер, мы получаем информацию об их структуре. В соответствии с принципом неопределенности Гейзенберга был сделан вывод, что малая ширина распределения указывает на то, что удаленные нейтроны va-lence имеют малую флуктуацию импульса, что можно объяснить длинным распределением плотности нейтронов в гало. Таким образом, большой радиус и узкое распределение импульса являются первыми признаками существования нейтронного ореола в ядрах вблизи границы устойчивости.

Распределения импульсов остаточных ядер после распада ⁶He, ⁶Li и ⁹li были изучены в фнлр, ОИЯИ. В эксперименте наблюдалось узкое распределение импульса ⁴He, (28-29) МэВ/С, от распада ⁶He на ядра AU и C при энергии 10 МэВ/нуклон. Поскольку представлялось интересным сравнить ядро 6He с его изобарой 6Li, были изучены распределения импульсов фрагментов 4He, полученных при распаде ⁶Li на ядрах ²⁸Si с энергией 18,2 МэВ/НУКЛОН, а также на ядрах ⁹Be и 181Ta с энергией 46 МэВ/НУКЛОН.

^{6,7}Li ядер: Резкий непрерывный спектр α-частиц был обнаружен в первых экспериментах по измерению угловых дисперсий дифференциальных сечений упругого рассеяния ионов ^{6,7}Li на ядрах ¹³C, ¹⁶O, ¹⁹F, ²⁴Mg, ²⁸Si, ⁴⁰Ca при 20 МэВ на тандемном ускорителе. Это указывало на то, что канал распада для частицы снаряда для 6,7 изотопов Li играет важную роль, и это является следствием возможной кластерной структуры этих ядер.

Для стабильных ядер ^{6,7}Li имеются данные об угловом распределении дифференциальных сечений упругого рассеяния на ядрах в широком диапазоне масс (a=1-238) и энергий (5-600 МэВ).

⁹Li ядер :Измерили угловые распределения упругого рассеяния ионов ⁷Li и ⁹Li на ядрах Рb и Ag при энергиях 56 и 86 МэВ соответственно. Определены эффективные радиусы взаимодействия и выявлены специфические особенности областей прозрачности взаимодействия.

Сечения упругого рассеяния богатых нейтронами ядер ⁹Li и ¹¹lin на протонной мишени впервые были измерены авторами статьи . В обратных кинематических условиях при энергиях 60 и 62 МэВ/НУКЛОН соответственно. Экспериментальные данные охватывают угловой диапазон от 25 до 65°. Следует отметить относительно небольшие погрешности измерений по сравнению с рассеянием ¹¹Li на ядрах ¹²C и ²⁸Si. Сравнивая результаты для ⁹Li и ¹¹Li, видно, что для ¹¹Li:

1) дифракционный минимум смещается в сторону меньших углов по сравнению с 9 Li, для которых min= 44°;

2) поперечное сечение в диапазоне углов рассеяния, доступных для измерений, меньше, чем для ⁹Li.

¹¹Li ядер:Несмотря на техническую сложность и низкую интенсивность вторичного ионного пучка, удалось получить достоверные экспериментальные данные по дифференциальным сечениям упругого рассеяния вторичного пучка ¹¹Li на кремниевой мишени при энергии 29 МэВ/нуклон.

Квазиупругое рассеяние изобар ¹¹Li и ¹¹C на ядре ¹²C при 60 МэВ/НУКЛОН было исследовано. Качество экспериментальных данных несколько лучше, чем в случае рассеяния ¹¹Li на ²⁸Si. По сравнению с рассеянием ¹¹Li на ²⁸Si, отношение σ/σ_R для мишени ¹²C имеет более выраженную структуру при малых углах рассеяния и быстро уменьшается по величине, начиная с угла 14°. Сравнивая угловые распределения для изобар ¹¹Li и ¹¹C, отметим, что формы угловых распределений различны для малых углов рассеяния, а σ/σ_R для ¹¹Li в 2-3 раза больше по величине, чем для ¹¹C.

Обзор опубликованных до настоящего времени работ по взаимодействию слабосвязанных (кластерных и экзотических) ядер ^{7,9}Li и ¹¹Li и их анализ показывают, что экспериментальных данных по ТРК нет и необходимо измерять их для изотопов Li при энергиях от кулоновского барьера Bc = (3-4) МэВ до (10-40) МэВ/нуклон на ядрах ²⁸Si, ²⁷Al, ⁹Be и ¹²C.

Одной из наиболее важных особенностей, объясняющих обилие легких элементов во Вселенной, является увеличение сечений взаимодействия в суббарьерной энергетической области при ядерных реакциях со слабо связанными ядрами. Этот эффект особенно сильно проявляется для легких слабосвязанных ядер ^{6,9,11}Li. основными каналами взаимодействия таких ядер являются реакции переноса, распада и полного слияния.

На сегодняшний день проведено очень мало экспериментов по рассеянию радиоактивных слабосвязанных ядер (^{8,9,11}Li). Из-за технической сложности и малой интенсивности вторичного радиоактивного пучка достоверные экспериментальные данные по дифференциальным сечениям упругого рассеяния вторичного пучка (^{8,9,11}Li) на кремниевых и других мишенях при низких энергиях, в том числе вблизи кулоновского барьера, пока не получены. В то же время дифференциальные сечения для упругого рассеяния должны быть надежно (с разделением вклада неупругих процессов) измерены в максимально возможном угловом диапазоне с малыми погрешностями как по углу, так и по сечениям.

Список использованных источников

1. O.M. Knyazkov, I.N. Kukhtina, S.A. Fayans, Interaction cross sections and structure of light exotic nuclei, Phys. Part. Nucl. – 1999. –Vol. 30. – P.369.

2. L.F. Canto, P.R.S. Gomes, R. Donangelo, M.S. Hussein, Fusion and breakup of weakly bound nuclei, Phys. Rep. -2006. –Vol. 424. –P. 1-6.

3. N. Keeley, R. Raabe, N. Alamanos, J.L. Sida, Fusion and direct reactions of halo nuclei at energies around the Coulomb barrier, Progress Part. Nucl. Phys. – 2007. –Vol. 59. – 579p.

4. Y.E. Penionzhkevich, Special features of nuclear reactions induced by loosely bound ⁶ He and ^{6,7} Li nuclei in the vicinity of the Coulomb barrier height, Phys. Atomic Nuclei.- 2009. – Vol.72. – P.16-17.

ӘӨЖ 539.171.016

⁹Ве+²⁸Si СЕРПІМДІ ШАШЫРАУ ПРОЦЕСІ ҮШІН ОҢТАЙЛЫ ОПТИКАЛЫҚ ПАРАМЕТРЛЕР ЖҮЙЕСІН АЛУ

Ерғалиұлы Ғани¹, Солдатхан Дәурен¹, Дауыл Кеңес²

gani.yergaliuly@mail.ru, soldathan.dauren@mail.ru, kenes.2094@mail.ru

Л.Н.Гумилев атындағы ЕҰУ Халықаралық ядролық физика, жаңа материалдар және технологиялар кафедрасының докторанттары¹ мен магистранты², Нұр-Сұлтан, Қазақстан Ғылыми жетекшісі – Н. Амангелді

Атом ядроларының бір-бірінен серпімді және серпімсіз шашырау процесін зерттеу соңғы уақытта қарқынды түрде жүруде [1-5]. Шашырау нәтижесі бойынша ядроның