Показать сокращенную информацию
dc.contributor.author | Mashentseva, Anastassiya A. | |
dc.contributor.author | Nurpeisova, Dinara T. | |
dc.contributor.author | Barsbay, Murat | |
dc.date.accessioned | 2024-09-19T10:25:05Z | |
dc.date.available | 2024-09-19T10:25:05Z | |
dc.date.issued | 2024 | |
dc.identifier.issn | 20462069 | |
dc.identifier.other | DOI 10.1039/d3ra07471d | |
dc.identifier.uri | http://rep.enu.kz/handle/enu/16685 | |
dc.description.abstract | In this study, copper (Cu) and nickel oxide (Ni2O3) microtubes (MTs) were synthesized using an electroless template deposition technique within porous polycarbonate (PC) track-etched membranes (TeMs) to obtain Cu@PC and Ni2O3@PC composite membranes, respectively. The pristine PC TeMs featured nanochannels with a pore density of 4 × 107 pores per cm2 and an average pore diameter of 400 ± 13 nm. The synthesis of a mixed composite, combining Cu and Ni2O3 within the PC matrix, was achieved through a two-step deposition process using a Ni2O3@PC template. An analysis of the resultant composite structure (Cu/Ni2O3@PC) confirmed the existence of CuNi (97.3%) and CuO (2.7%) crystalline phases. The synthesized catalysts were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) analysis, and atomic force microscopy (AFM). In photodegradation assessments, the Cu/Ni2O3@PC mixed composite demonstrated higher photocatalytic activity, achieving a substantial 59% degradation of norfloxacin (NOR) under UV light irradiation. This performance surpassed that of both Ni2O3@PC and Cu@PC composites. The optimal pH for maximum NOR removal from the aqueous solution was determined to be pH 5, with a reaction time of 180 min. The degradation of NOR in the presence of these composites adhered to the Langmuir– Hinshelwood mechanism and a pseudo-first order kinetic model. The reusability of the catalysts was also investigated for 10 consecutive runs, without any activation or regeneration treatments. The Cu@PC membrane catalyst demonstrated a marked decline in degradation efficiency after the 2nd test cycle, ultimately catalyzing only 10% of NOR after the 10th cycle. In contrast, the Ni2O3@PC based catalyst demonstrated a more stable NOR degradation efficiency throughout all 10 runs, with 27% NOR removal observed during the final test. Remarkably, the catalytic performance of the Cu/Ni2O3@PC mixed composite remained highly active even after being recycled 4 times. The degradation efficiency exhibited a gradual reduction, with a 17% decrease after the 6th run and a cumulative 35% removal of NOR achieved by the 10th cycle. Overall, the findings indicate that Cu/Ni2O3@PC mixed composite membranes may represent an advancement in the quest to mitigate the adverse effects of antibiotic pollution in aquatic environments and hold significant promise for sustainable water treatment practices | ru |
dc.language.iso | en | ru |
dc.publisher | RSC Advances | ru |
dc.relation.ispartofseries | Том 14, Выпуск 7, Страницы 4424 - 4435; | |
dc.title | Effect of copper doping on the photocatalytic performance of Ni2O3@PC membrane composites in norfloxacin degradation | ru |
dc.type | Article | ru |